Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Korrelierte Magnete aus einzelnen Atomen

29.09.2016

Wissenschaftler am MPQ beobachten die Entstehung antiferromagnetischer Korrelationen in eindimensionalen fermionischen Quanten-Vielteilchensystemen

Die Festkörperphysik weist eine Vielfalt interessanter Phänomene auf, die zum Teil noch nicht vollständig erklärt werden können. Experimente mit fermionischen Atomen in optischen Gittern kommen dem Verhalten von Elektronen in Festkörperkristallen sehr nahe und stellen somit einen gut steuerbaren Quantensimulator solcher Systeme dar.


Graphik: Martin Boll, Abt. Quanten-Vielteilchensysteme, MPQ

Nun hat ein Team von Wissenschaftlern um Prof. Immanuel Bloch und Dr. Christian Groß am Max-Planck-Institut für Quantenoptik in einer Kette aus fermionischen Atomen die Entstehung einer antiferromagnetischen Ordnung über eine Korrelationslänge von mehreren Gitterplätzen beobachtet. Im Gegensatz zum Ferromagnetismus, den wir aus unserem Alltagsleben kennen, ist Antiferromagnetismus durch eine alternierende Ausrichtung der magnetischen Momente der Elektronen bzw. Atome gekennzeichnet.

Indem die Wissenschaftler ihr Quantengas-Mikroskop mit modernen Techniken für die Positionierung einzelner Teilchen kombinierten, konnten sie gleichzeitig Spin- und Dichte-Verteilung mit einer für einzelne Atome und einzelne Gitterplätze empfindlichen Auflösung beobachten. Durch die Simulation der in makroskopischen Kristallen herrschenden Bedingungen mit fermionischen Quanten-Vielteilchensystemen hofft man, ein besseres Verständnis von Phänomenen wie z.B. der sogenannten Hochtemperatur-Supraleitung zu erzielen. (Science, 16 September 2016, DOI:10.1126/science.aag1635).

Im Experiment wurde zunächst eine Wolke von fermionischen Lithium-6-Atomen auf extrem tiefe Temperaturen, etwa einem Millionstel Kelvin über dem absoluten Nullpunkt, gekühlt. Diese ultrakalten Fermionen wurden mit Lichtfeldern eingefangen und in eine Ebene gezwungen, die in einem weiteren Schritt in einzelne eindimensionale Röhrchen aufgespalten wurde. Schließlich wurde entlang der Röhrchen ein optisches Gitter eingeschaltet, welches das periodische Potential nachahmt, das die Elektronen in einem echten Material spüren.

Im Durchschnitt waren die eindimensionalen Röhrchen vollständig gefüllt, d.h. jeder Gitterplatz war mit genau einem Atom besetzt. Zwei innere Zustände der Lithium-Atome imitieren das magnetische Moment der Elektronen, das entweder aufwärts oder abwärts weisen kann. Solange die Temperatur des Systems hoch ist im Vergleich zu der magnetischen Wechselwirkung zwischen diesen Spins, zeigt nur die Dichteverteilung der Atome ein regelmäßiges Muster, das durch das optische Gitter bestimmt ist. Unterhalb einer bestimmten Temperatur sollten sich aber, so die Erwartung, die magnetischen Momente benachbarter Atome entgegengesetzt ausrichten und somit zu antiferromagnetischen Korrelationen führen. „Diese Korrelationen treten auf, weil das System danach strebt seine Energie zu erniedrigen“, erklärt Martin Boll, Doktorand am Experiment. „Ursache dafür ist der Mechanismus des „Super-Austauschs“, bei dem die magnetischen Momente benachbarter Atome ihre Richtung austauschen.“

Das Team um Christian Groß und Immanuel Bloch hatte vor allem zwei Herausforderungen zu meistern: Zum einen war es notwendig, die Teilchendichte mit hoher Auflösung zu messen, um einzelne Teilchen bzw. Löcher auf ihren jeweiligen Gitterplätzen eindeutig zu identifizieren. Dies gelang mit dem Quantengas-Mikroskop, bei dem ein hochauflösendes Objektiv alle Atome auf einen Schlag abbildet, sodass eine Folge von Schnappschüssen des atomaren Gases aufgezeichnet werden kann. „Die zweite und wirklich große Herausforderung war, die Atome entsprechend der Ausrichtung ihrer magnetischen Momente voneinander zu trennen“, betont Martin Boll. „Zu diesem Zweck haben wir ein optisches Übergitter mit einem magnetischen Feldgradienten kombiniert, der die Potentialminima in Abhängigkeit von der jeweiligen Ausrichtung des magnetischen Moments verschob. Als Folge davon befanden sich entgegengesetzte magnetische Momente in unterschiedlichen Bereichen der Doppelstruktur des Potentialminimums, die durch das Übergitter erzeugt worden war. In einer Serie von Messungen haben wir die Methode so ausgefeilt, dass wir eine Aufspaltung von nahezu 100 Prozent erhielten.“

Durch Einsatz all dieser Werkzeuge gelang es dem Team zu beobachten, wie sich in der eindimensionalen Kette antiferromagnetische Korrelationen herausbildeten, die sich über mehr als drei Gitterplätze, also deutlich über die unmittelbare Nachbarschaft hinaus, erstreckten (siehe Abb. 1). „Quantensimulationen mit Fermionen sind vor allem deshalb interessant, weil sie zu einem besseren Verständnis der sogenannten Hochtemperatur-Supraleitung führen könnten. Man nimmt an, dass der Schlüssel hierfür in dem Wechselspiel zwischen Löchern und antiferromagnetischen Korrelationen liegt“, führt Dr. Christian Groß aus. „Schon in naher Zukunft sind wir vielleicht in der Lage, atomare Systeme mit einer Dotierung an Löchern zu präparieren, die den Bedingungen in supraleitenden Materialien weitgehend entspricht.“ Olivia Meyer-Streng

Abb. 1: In (a) werden die direkten Bilder der eindimensionalen atomaren Ketten gezeigt. Die dicken waagerechten Linien markieren die Barriere zwischen den unterschiedlichen Ketten. Atome oberhalb der gestrichelten Linie haben aufwärts gerichtete magnetische Momente (rot), und umgekehrt (grün), wie in dem rekonstruierten Bild (b) dargestellt wird. In einigen Fällen werden doppelt besetzte Plätze oder Löcher nachgewiesen. Graphik: Martin Boll, Abt. Quanten-Vielteilchensysteme, MPQ

Originalveröffentlichung:
Martin Boll, Timon A. Hilker, Guillaume Salomon, Ahmed Omran, Jacopo Nespolo, Lode Pollet, Immanuel Bloch, Christian Gross
Spin- and density-resolved microscopy of antiferromagnetic correlations in Fermi-Hubbard chains
Science, 16 September 2016, DOI:10.1126/science.aag1635

Kontakt:
Prof. Dr. Immanuel Bloch
Lehrstuhl für Quantenoptik
Ludwig-Maximilians-Universität München
Schellingstr. 4, 80799 München, und
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 138
E-Mail: immanuel.bloch@mpq.mpg.de

Dr. Christian Groß
Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 - 713
E-Mail: christian.gross@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 - 213
Telefax: +49 (0)89 / 32 905 - 200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt
22.05.2017 | Universität Basel

nachricht Neuer Ionisationsweg in molekularem Wasserstoff identifiziert
22.05.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: XENON1T: Das empfindlichste „Auge“ für Dunkle Materie

Gemeinsame Meldung des MPI für Kernphysik Heidelberg, der Albert-Ludwigs-Universität Freiburg, der Johannes Gutenberg-Universität Mainz und der Westfälischen Wilhelms-Universität Münster

„Das weltbeste Resultat zu Dunkler Materie – und wir stehen erst am Anfang!“ So freuen sich Wissenschaftler der XENON-Kollaboration über die ersten Ergebnisse...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

Flugzeugreifen – Ähnlich wie PKW-/LKW-Reifen oder ganz verschieden?

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Myrte schaltet „Anstandsdame“ in Krebszellen aus

22.05.2017 | Biowissenschaften Chemie

Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

22.05.2017 | Physik Astronomie

Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält

22.05.2017 | Biowissenschaften Chemie