Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Korrelierte Magnete aus einzelnen Atomen

29.09.2016

Wissenschaftler am MPQ beobachten die Entstehung antiferromagnetischer Korrelationen in eindimensionalen fermionischen Quanten-Vielteilchensystemen

Die Festkörperphysik weist eine Vielfalt interessanter Phänomene auf, die zum Teil noch nicht vollständig erklärt werden können. Experimente mit fermionischen Atomen in optischen Gittern kommen dem Verhalten von Elektronen in Festkörperkristallen sehr nahe und stellen somit einen gut steuerbaren Quantensimulator solcher Systeme dar.


Graphik: Martin Boll, Abt. Quanten-Vielteilchensysteme, MPQ

Nun hat ein Team von Wissenschaftlern um Prof. Immanuel Bloch und Dr. Christian Groß am Max-Planck-Institut für Quantenoptik in einer Kette aus fermionischen Atomen die Entstehung einer antiferromagnetischen Ordnung über eine Korrelationslänge von mehreren Gitterplätzen beobachtet. Im Gegensatz zum Ferromagnetismus, den wir aus unserem Alltagsleben kennen, ist Antiferromagnetismus durch eine alternierende Ausrichtung der magnetischen Momente der Elektronen bzw. Atome gekennzeichnet.

Indem die Wissenschaftler ihr Quantengas-Mikroskop mit modernen Techniken für die Positionierung einzelner Teilchen kombinierten, konnten sie gleichzeitig Spin- und Dichte-Verteilung mit einer für einzelne Atome und einzelne Gitterplätze empfindlichen Auflösung beobachten. Durch die Simulation der in makroskopischen Kristallen herrschenden Bedingungen mit fermionischen Quanten-Vielteilchensystemen hofft man, ein besseres Verständnis von Phänomenen wie z.B. der sogenannten Hochtemperatur-Supraleitung zu erzielen. (Science, 16 September 2016, DOI:10.1126/science.aag1635).

Im Experiment wurde zunächst eine Wolke von fermionischen Lithium-6-Atomen auf extrem tiefe Temperaturen, etwa einem Millionstel Kelvin über dem absoluten Nullpunkt, gekühlt. Diese ultrakalten Fermionen wurden mit Lichtfeldern eingefangen und in eine Ebene gezwungen, die in einem weiteren Schritt in einzelne eindimensionale Röhrchen aufgespalten wurde. Schließlich wurde entlang der Röhrchen ein optisches Gitter eingeschaltet, welches das periodische Potential nachahmt, das die Elektronen in einem echten Material spüren.

Im Durchschnitt waren die eindimensionalen Röhrchen vollständig gefüllt, d.h. jeder Gitterplatz war mit genau einem Atom besetzt. Zwei innere Zustände der Lithium-Atome imitieren das magnetische Moment der Elektronen, das entweder aufwärts oder abwärts weisen kann. Solange die Temperatur des Systems hoch ist im Vergleich zu der magnetischen Wechselwirkung zwischen diesen Spins, zeigt nur die Dichteverteilung der Atome ein regelmäßiges Muster, das durch das optische Gitter bestimmt ist. Unterhalb einer bestimmten Temperatur sollten sich aber, so die Erwartung, die magnetischen Momente benachbarter Atome entgegengesetzt ausrichten und somit zu antiferromagnetischen Korrelationen führen. „Diese Korrelationen treten auf, weil das System danach strebt seine Energie zu erniedrigen“, erklärt Martin Boll, Doktorand am Experiment. „Ursache dafür ist der Mechanismus des „Super-Austauschs“, bei dem die magnetischen Momente benachbarter Atome ihre Richtung austauschen.“

Das Team um Christian Groß und Immanuel Bloch hatte vor allem zwei Herausforderungen zu meistern: Zum einen war es notwendig, die Teilchendichte mit hoher Auflösung zu messen, um einzelne Teilchen bzw. Löcher auf ihren jeweiligen Gitterplätzen eindeutig zu identifizieren. Dies gelang mit dem Quantengas-Mikroskop, bei dem ein hochauflösendes Objektiv alle Atome auf einen Schlag abbildet, sodass eine Folge von Schnappschüssen des atomaren Gases aufgezeichnet werden kann. „Die zweite und wirklich große Herausforderung war, die Atome entsprechend der Ausrichtung ihrer magnetischen Momente voneinander zu trennen“, betont Martin Boll. „Zu diesem Zweck haben wir ein optisches Übergitter mit einem magnetischen Feldgradienten kombiniert, der die Potentialminima in Abhängigkeit von der jeweiligen Ausrichtung des magnetischen Moments verschob. Als Folge davon befanden sich entgegengesetzte magnetische Momente in unterschiedlichen Bereichen der Doppelstruktur des Potentialminimums, die durch das Übergitter erzeugt worden war. In einer Serie von Messungen haben wir die Methode so ausgefeilt, dass wir eine Aufspaltung von nahezu 100 Prozent erhielten.“

Durch Einsatz all dieser Werkzeuge gelang es dem Team zu beobachten, wie sich in der eindimensionalen Kette antiferromagnetische Korrelationen herausbildeten, die sich über mehr als drei Gitterplätze, also deutlich über die unmittelbare Nachbarschaft hinaus, erstreckten (siehe Abb. 1). „Quantensimulationen mit Fermionen sind vor allem deshalb interessant, weil sie zu einem besseren Verständnis der sogenannten Hochtemperatur-Supraleitung führen könnten. Man nimmt an, dass der Schlüssel hierfür in dem Wechselspiel zwischen Löchern und antiferromagnetischen Korrelationen liegt“, führt Dr. Christian Groß aus. „Schon in naher Zukunft sind wir vielleicht in der Lage, atomare Systeme mit einer Dotierung an Löchern zu präparieren, die den Bedingungen in supraleitenden Materialien weitgehend entspricht.“ Olivia Meyer-Streng

Abb. 1: In (a) werden die direkten Bilder der eindimensionalen atomaren Ketten gezeigt. Die dicken waagerechten Linien markieren die Barriere zwischen den unterschiedlichen Ketten. Atome oberhalb der gestrichelten Linie haben aufwärts gerichtete magnetische Momente (rot), und umgekehrt (grün), wie in dem rekonstruierten Bild (b) dargestellt wird. In einigen Fällen werden doppelt besetzte Plätze oder Löcher nachgewiesen. Graphik: Martin Boll, Abt. Quanten-Vielteilchensysteme, MPQ

Originalveröffentlichung:
Martin Boll, Timon A. Hilker, Guillaume Salomon, Ahmed Omran, Jacopo Nespolo, Lode Pollet, Immanuel Bloch, Christian Gross
Spin- and density-resolved microscopy of antiferromagnetic correlations in Fermi-Hubbard chains
Science, 16 September 2016, DOI:10.1126/science.aag1635

Kontakt:
Prof. Dr. Immanuel Bloch
Lehrstuhl für Quantenoptik
Ludwig-Maximilians-Universität München
Schellingstr. 4, 80799 München, und
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 138
E-Mail: immanuel.bloch@mpq.mpg.de

Dr. Christian Groß
Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 - 713
E-Mail: christian.gross@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 - 213
Telefax: +49 (0)89 / 32 905 - 200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Innovative High Power LED Light Engine für den UV Bereich
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

nachricht Spinflüssigkeiten – zurück zu den Anfängen
22.06.2017 | Universität Augsburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie

Innovative High Power LED Light Engine für den UV Bereich

22.06.2017 | Physik Astronomie

Wie Menschen Schäden an Gebäuden wahrnehmen

22.06.2017 | Architektur Bauwesen