Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Korrelierte Magnete aus einzelnen Atomen

29.09.2016

Wissenschaftler am MPQ beobachten die Entstehung antiferromagnetischer Korrelationen in eindimensionalen fermionischen Quanten-Vielteilchensystemen

Die Festkörperphysik weist eine Vielfalt interessanter Phänomene auf, die zum Teil noch nicht vollständig erklärt werden können. Experimente mit fermionischen Atomen in optischen Gittern kommen dem Verhalten von Elektronen in Festkörperkristallen sehr nahe und stellen somit einen gut steuerbaren Quantensimulator solcher Systeme dar.


Graphik: Martin Boll, Abt. Quanten-Vielteilchensysteme, MPQ

Nun hat ein Team von Wissenschaftlern um Prof. Immanuel Bloch und Dr. Christian Groß am Max-Planck-Institut für Quantenoptik in einer Kette aus fermionischen Atomen die Entstehung einer antiferromagnetischen Ordnung über eine Korrelationslänge von mehreren Gitterplätzen beobachtet. Im Gegensatz zum Ferromagnetismus, den wir aus unserem Alltagsleben kennen, ist Antiferromagnetismus durch eine alternierende Ausrichtung der magnetischen Momente der Elektronen bzw. Atome gekennzeichnet.

Indem die Wissenschaftler ihr Quantengas-Mikroskop mit modernen Techniken für die Positionierung einzelner Teilchen kombinierten, konnten sie gleichzeitig Spin- und Dichte-Verteilung mit einer für einzelne Atome und einzelne Gitterplätze empfindlichen Auflösung beobachten. Durch die Simulation der in makroskopischen Kristallen herrschenden Bedingungen mit fermionischen Quanten-Vielteilchensystemen hofft man, ein besseres Verständnis von Phänomenen wie z.B. der sogenannten Hochtemperatur-Supraleitung zu erzielen. (Science, 16 September 2016, DOI:10.1126/science.aag1635).

Im Experiment wurde zunächst eine Wolke von fermionischen Lithium-6-Atomen auf extrem tiefe Temperaturen, etwa einem Millionstel Kelvin über dem absoluten Nullpunkt, gekühlt. Diese ultrakalten Fermionen wurden mit Lichtfeldern eingefangen und in eine Ebene gezwungen, die in einem weiteren Schritt in einzelne eindimensionale Röhrchen aufgespalten wurde. Schließlich wurde entlang der Röhrchen ein optisches Gitter eingeschaltet, welches das periodische Potential nachahmt, das die Elektronen in einem echten Material spüren.

Im Durchschnitt waren die eindimensionalen Röhrchen vollständig gefüllt, d.h. jeder Gitterplatz war mit genau einem Atom besetzt. Zwei innere Zustände der Lithium-Atome imitieren das magnetische Moment der Elektronen, das entweder aufwärts oder abwärts weisen kann. Solange die Temperatur des Systems hoch ist im Vergleich zu der magnetischen Wechselwirkung zwischen diesen Spins, zeigt nur die Dichteverteilung der Atome ein regelmäßiges Muster, das durch das optische Gitter bestimmt ist. Unterhalb einer bestimmten Temperatur sollten sich aber, so die Erwartung, die magnetischen Momente benachbarter Atome entgegengesetzt ausrichten und somit zu antiferromagnetischen Korrelationen führen. „Diese Korrelationen treten auf, weil das System danach strebt seine Energie zu erniedrigen“, erklärt Martin Boll, Doktorand am Experiment. „Ursache dafür ist der Mechanismus des „Super-Austauschs“, bei dem die magnetischen Momente benachbarter Atome ihre Richtung austauschen.“

Das Team um Christian Groß und Immanuel Bloch hatte vor allem zwei Herausforderungen zu meistern: Zum einen war es notwendig, die Teilchendichte mit hoher Auflösung zu messen, um einzelne Teilchen bzw. Löcher auf ihren jeweiligen Gitterplätzen eindeutig zu identifizieren. Dies gelang mit dem Quantengas-Mikroskop, bei dem ein hochauflösendes Objektiv alle Atome auf einen Schlag abbildet, sodass eine Folge von Schnappschüssen des atomaren Gases aufgezeichnet werden kann. „Die zweite und wirklich große Herausforderung war, die Atome entsprechend der Ausrichtung ihrer magnetischen Momente voneinander zu trennen“, betont Martin Boll. „Zu diesem Zweck haben wir ein optisches Übergitter mit einem magnetischen Feldgradienten kombiniert, der die Potentialminima in Abhängigkeit von der jeweiligen Ausrichtung des magnetischen Moments verschob. Als Folge davon befanden sich entgegengesetzte magnetische Momente in unterschiedlichen Bereichen der Doppelstruktur des Potentialminimums, die durch das Übergitter erzeugt worden war. In einer Serie von Messungen haben wir die Methode so ausgefeilt, dass wir eine Aufspaltung von nahezu 100 Prozent erhielten.“

Durch Einsatz all dieser Werkzeuge gelang es dem Team zu beobachten, wie sich in der eindimensionalen Kette antiferromagnetische Korrelationen herausbildeten, die sich über mehr als drei Gitterplätze, also deutlich über die unmittelbare Nachbarschaft hinaus, erstreckten (siehe Abb. 1). „Quantensimulationen mit Fermionen sind vor allem deshalb interessant, weil sie zu einem besseren Verständnis der sogenannten Hochtemperatur-Supraleitung führen könnten. Man nimmt an, dass der Schlüssel hierfür in dem Wechselspiel zwischen Löchern und antiferromagnetischen Korrelationen liegt“, führt Dr. Christian Groß aus. „Schon in naher Zukunft sind wir vielleicht in der Lage, atomare Systeme mit einer Dotierung an Löchern zu präparieren, die den Bedingungen in supraleitenden Materialien weitgehend entspricht.“ Olivia Meyer-Streng

Abb. 1: In (a) werden die direkten Bilder der eindimensionalen atomaren Ketten gezeigt. Die dicken waagerechten Linien markieren die Barriere zwischen den unterschiedlichen Ketten. Atome oberhalb der gestrichelten Linie haben aufwärts gerichtete magnetische Momente (rot), und umgekehrt (grün), wie in dem rekonstruierten Bild (b) dargestellt wird. In einigen Fällen werden doppelt besetzte Plätze oder Löcher nachgewiesen. Graphik: Martin Boll, Abt. Quanten-Vielteilchensysteme, MPQ

Originalveröffentlichung:
Martin Boll, Timon A. Hilker, Guillaume Salomon, Ahmed Omran, Jacopo Nespolo, Lode Pollet, Immanuel Bloch, Christian Gross
Spin- and density-resolved microscopy of antiferromagnetic correlations in Fermi-Hubbard chains
Science, 16 September 2016, DOI:10.1126/science.aag1635

Kontakt:
Prof. Dr. Immanuel Bloch
Lehrstuhl für Quantenoptik
Ludwig-Maximilians-Universität München
Schellingstr. 4, 80799 München, und
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 138
E-Mail: immanuel.bloch@mpq.mpg.de

Dr. Christian Groß
Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 - 713
E-Mail: christian.gross@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 - 213
Telefax: +49 (0)89 / 32 905 - 200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Topologische Isolatoren: Neuer Phasenübergang entdeckt
17.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Vorhersagen bestätigt: Schwere Elemente bei Neutronensternverschmelzungen nachgewiesen
17.10.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Sicheres Bezahlen ohne Datenspur

17.10.2017 | Informationstechnologie

Pflanzen gegen Staunässe schützen

17.10.2017 | Biowissenschaften Chemie

Den Trends der Umweltbranche auf der Spur

17.10.2017 | Ökologie Umwelt- Naturschutz