Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Komplexe Gasbewegung im Zentrum der Milchstraße

14.07.2017

Forscher aus Heidelberg und Oxford simulieren diese Bewegung mit einem umfassenden Modell

Wie bewegt sich das Gas im Zentrum der Milchstraße? Mit einer umfassenden Computersimulation ist es Wissenschaftlern der Universität Heidelberg in Zusammenarbeit mit Kollegen der University of Oxford gelungen, die Bewegung der Gaswolken nachzuvollziehen.


Bild: ESA/Hubble & NASA. Acknowledgements: G. Chapdelaine, L. Limatola, and R. Gendler

Die Spiralgalaxie Messier 61, aufgenommen mit dem Hubble Space Telescope. Unsere Milchstraße könnte dieser Galaxie ähneln.

Das neue Modell macht es nunmehr möglich, die komplexe Gasbewegung schlüssig zu beschreiben. Durchgeführt wurden die Arbeiten von den Astrophysikern Dr. Mattia C. Sormani (Heidelberg) und Matthew Ridley (Oxford), auf Heidelberger Seite am Sonderforschungsbereich „Das Milchstraßensystem“ (SFB 881).

Unser Sonnensystem befindet sich in der Randzone einer scheibenförmigen Galaxie mit einem Durchmesser von rund 100.000 Lichtjahren, der Milchstraße. Von der Erde aus lässt sich ihr Aussehen daher nur indirekt beobachten, indem Positionen und Bewegungen von Sternen und Gaswolken gemessen werden. Sehr wahrscheinlich ähnelt die Milchstraße einer sogenannten Balkenspiralgalaxie, einem sehr häufig beobachteten Typ von Galaxie im Universum. Ein bekanntes Beispiel dafür ist die Galaxie M61.

Neben den sichtbaren Sternen befinden sich in der Milchstraße große Mengen interstellaren Gases, dessen Verteilung und Bewegung äußerst komplex ist. Vor allem im Zentrum findet sich ein Missverhältnis zwischen der Menge des vorhandenen Gases und einer geringen Aktivität der Sternentstehung.

„Mit unserer Simulation können wir nicht nur diese Diskrepanzen vorhergehender Modelle aufheben, sondern auch die tatsächlich beobachtete Bewegung des Gases erstaunlich gut wiedergeben“, so Prof. Dr. Ralf S. Klessen, der am Institut für Theoretische Astrophysik am Zentrum für Astronomie der Universität Heidelberg (ZAH) forscht.

In dem neuen Modell bewegen sich die Gaswolken in der Zentralen Molekularen Zone (CMZ) – die innersten 1.500 Lichtjahre der Milchstraße – auf einer ellipsenförmigen Scheibe, die zwei Spiralarme hat. Das Gas aus der Umgebung strömt durch diese beiden Arme in die CMZ. Kollisionen der Gaswolken erzeugen dabei Druckwellen, die Turbulenzen auslösen. „Diese Turbulenzen könnten die Entstehung neuer Sterne verhindern, indem sie das Kollabieren der Gaswolken unterbrechen. Dies würde eine konsistente Erklärung für die bislang unerklärbar geringe Sternentstehungsrate in dieser Region liefern“, sagt Dr. Sormani.

Durch ihre Computersimulation konnten die Wissenschaftler ein räumliches Bild vom Zentrum der Galaxis erstellen und die Position einiger bekannter Gaswolken erstmals innerhalb dieser dreidimensionalen „Karte“ bestimmen. Die Astrophysiker planen nun, ihre Simulation weiter zu optimieren, um ihre Ergebnisse noch besser an die Beobachtungen anzupassen.

Sie wollen außerdem weitere Unklarheiten wie die ausgeprägte Asymmetrie der Gasverteilung in der zentralen Region der Milchstraße klären. Weiterführende Simulationen, die die zeitliche Entwicklung der chemischen Zusammensetzung des Gases verfolgen, sollen diesem Geheimnis auf den Grund gehen.

„Wir gehen davon aus, dass diese Erkenntnisse einen wesentlichen Einfluss auf künftige Untersuchungen zum Aufbau unserer Galaxis haben werden“, betont Prof. Klessen. Die Forschungsergebnisse wurden in den „Monthly Notices of the Royal Astronomical Society“ veröffentlicht.

Originalveröffentlichung:
M.G.L. Ridley, M.C. Sormani, R.G. Treß, J. Magorrian, R.S. Klessen: Nuclear spirals in the inner Milky Way. Monthly Notices of the Royal Astronomical Society (2017) 469 (2): 2251-2262, doi: 10.1093/mnras/stx944

Kontakt:
Dr. Renate Hubele
Sonderforschungsbereich 881 „Das Milchstraßensystem“
Telefon (06221) 528-291
hubele@hda-hd.de

Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://sfb881.zah.uni-heidelberg.de
http://www.uni-heidelberg.de/presse/news2017/pm20170713_milchstrasse.html

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie