Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Klassische Mechanik hilft Quantencomputer zu steuern: Mit dem Tennisschläger in die Quantenwelt

06.07.2017

Quantentechnik gilt als Zukunftstechnologie: kleiner, schneller und leistungsfähiger als herkömmliche Elektronik. Die Nutzung von Quanteneffekten ist jedoch schwierig, weil die kleinsten Bausteine der Materie andere Eigenschaften zeigen als die uns bekannte Welt. Einem internationalen Forscherteam ist es jetzt gelungen, die fehlertolerante Manipulation von Quanten auf einen Effekt der klassischen Mechanik zurückzuführen.

Der Flug eines Tennisschlägers durch die Luft hilft, das Verhalten von Quanten vorherzusagen. „Durch eine Analogie aus der klassischen Physik können wir zuverlässige Steuerungen von Phänomenen der Quantenwelt effizienter entwerfen und veranschaulichen“, berichtet Steffen Glaser, Professor in der Fakultät für Chemie der Technischen Universität München TUM.


Während sich der Schläger um 360 Grad um die Querachse dreht, führt der Tennisschläger-Effekt zu einer unbeabsichtigten zusätzlichen 180 Grad-Rotation um seine Längsachse.

Bild: Steffen Glaser / TUM

„Die Eigenschaften von Quanten zu kontrollieren und für technische Prozesse zu nutzen, ist bisher schwer, denn die Quanten folgen ihren eigenen Gesetzen, die unsere Vorstellungskraft oft übersteigen“, erklärt der Wissenschaftler. „Mögliche Anwendungen wie abhörsichere Netzwerke, hochempfindliche Messgeräte und ultraschnelle Quantencomputer stecken daher noch in den Kinderschuhen.“

Quanten unter Kontrolle

„Will man Quanteneffekte technisch nutzen, indem man das Verhalten der Teilchen durch elektromagnetische Felder beeinflusst, braucht man möglichst schnelle Methoden, um fehlertolerante Steuerungssequenzen entwerfen zu können“, so Glaser. „Bisher basieren die meisten der Methoden jedoch auf sehr aufwändigen rechnerischen Verfahren.“

Zusammen mit einem internationalen Team aus Physikern, Chemikern und Mathematikern hat der Forscher nun einen unerwarteten, vielversprechenden neuartigen Ansatz gefunden: Mit Hilfe des Tennisschläger-Effekts, eines seit langem bekannten Phänomens aus der klassischen Mechanik, kann veranschaulicht werden, wie der Drehimpuls von Quanten durch elektromagnetische Steuerbefehle zuverlässig verändert werden kann.

Tennisschläger im Flug

Der Tennisschläger-Effekt beschreibt, was passiert, wenn man einen Schläger in die Luft wirft und ihn dabei in Rotation versetzt. Wer versucht, den Schläger während des Flugs um seine Querachse rotieren zu lassen, erlebt eine kleine Überraschung: Gleichzeitig mit der beabsichtigten 360 Grad-Drehung um die Querachse vollführt der Schläger fast immer eine zusätzliche Drehung um 180 Grad um seine Längsachse. Fängt man den Schläger auf, zeigt die ehemalige Unterseite nach oben.

„Verantwortlich für diesen Effekt sind kleine Ungenauigkeiten und Störungen beim Abwurf und die unterschiedlichen Trägheitsmomente der drei Achsen eines unsymmetrischen Körpers. Statt des Tennisschlägers kann man auch ein Buch oder ein Mobiltelefon – zur Sicherheit über einer weichen Unterlage – in die Luft werfen, um den Effekt zu sehen“, erläutert Glaser. Die längste und die kürzeste Rotationsachse ist stabil. Die mittlere Achse, im Fall des Tennisschlägers die Querachse, ist jedoch unstabil und schon minimale Störungen führen sehr zuverlässig zu einer zusätzlichen 180 Grad-Drehung.

Quanten in Bewegung

Auch Quanten haben ein Drehmoment, den Spin. Dieser lässt sich durch Anlegen elektromagnetischer Felder beeinflussen. „Das Ziel der Quantentechnik ist es, die Ausrichtung des Spins gezielt zu verändern und dabei Fehler durch kleine Störungen zu minimieren“, so Glaser.

„Die gefundene mathematische Analogie zwischen den geometrischen Eigenschaften der klassischen Physik frei rotierender Objekte und der Steuerung von Quantenphänomenen kann jetzt genutzt werden, um die elektromagnetisch Steuerung von Quantenzuständen zu optimieren“, resümiert Mitautor Prof. Dominique Sugny. Als Hans Fischer-Fellow forscht der Wissenschaftler der französischen Université de Bourgogne auch am Institute for Advanced Study der TUM.

Neue, robuste Modelle

Dass der Tennisschläger-Effekt tatsächlich dabei hilft, die Robustheit von Steuerungs-Sequenzen zu verbessern, konnte das Team durch Messungen an Kernspins experimentell bestätigen. Ihre Ergebnisse veröffentlichten sie jetzt im Fachjournal „Scientific Reports“.

„Auf der Basis dieser Forschungsergebnisse können wir nun effizientere mathematische Modelle entwickeln, mit denen sich Fehler bei der Steuerung von Quantenprozessoren vermeiden lassen“, ergänzt Glaser. „Aufbauend auf den wohlverstandenen Phänomenen der klassischen Physik kann damit die Entwicklung zuverlässiger Steuerungssequenzen in der Quantentechnologie nicht nur veranschaulicht, sondern auch wesentlich beschleunigt werden.“

---

Die Arbeiten wurden gefördert aus Mitteln der Deutschen Forschungsgemeinschaft (DFG), der französischen Forschungsförderungsorganisationen Agence Nationale de la Recherche (ANR) und Centre National de la Recherche Scientifique (CNRS), des mexikanischen Förderprogramms Convocatorias Abiertas Fondo de Cooperación Internacional en Ciencia y Tecnología del Conacyt (FONCICYT), der Universidad Nacional Autónoma de México, dem Elitenetzwerk Bayern und der Technischen Universität München über das mit Mitteln der deutschen Exzellenzinitiative und der Europäischen Union geförderte Institute for Advanced Study. Die Experimente wurden am Bayerischen NMR-Zentrum in Garching durchgeführt.

Publikation:

Linking the rotation of a rigid body to the Schrödinger equation: The quantum tennis racket effect and beyond
L. Van Damme, D. Leiner, P. Mardešić, S. J. Glaser & D. Sugny
Scientific Reports 7, Article number: 3998 (2017) – DOI: 10.1038/s41598-017-04174-x
https://www.nature.com/articles/s41598-017-04174-x

Bild:

https://mediatum.ub.tum.de/1368067

Kontakt:

Prof. Dr. Steffen Glaser
Technische Universität München
Lehrstuhl für Organische Chemie
Lichtenbergstr.4, 85748 Garching, Germany
Tel.: +49 89 289 52602 – E-Mail: glaser@tum.de – Web: http://www.ocnmr.ch.tum.de/

Prof. Dr. Dominique Sugny
Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB)
UMR 5209 CNRS-Université Bourgogne Franche Comté
9 Av. A. Savary, BP 47 870, F-21078, Dijon Cedex, France
Tel.: +33 380 395972 – E-Mail: Dominique.Sugny@u-bourgogne.fr

Weitere Informationen:

https://www.tum.de/die-tum/aktuelles/pressemitteilungen/detail/article/34054/ Link zur Pressemitteilung

Dr. Ulrich Marsch | Technische Universität München

Weitere Berichte zu: Quanten Quantencomputer Quantenwelt Querachse Steuerung Tennisschläger

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Weniger (Flug-)Lärm dank Mathematik
21.09.2017 | Forschungszentrum MATHEON ECMath

nachricht Der stotternde Motor im Weltall
21.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften