Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Klassisch oder nicht? Physik der Nanoplasmen

26.03.2015

Die Wechselwirkung von intensiven Laserpulsen mit Partikeln auf einer Nanometer-Skala resultiert in der Erzeugung eines expandierenden Nanoplasmas.

In der Vergangenheit wurde die Dynamik eines Nanoplasmas typischerweise durch klassische Phänomene wie die thermische Emission von Elektronen beschrieben. Im Gegensatz dazu demonstriert eine neue Studie über die Wechselwirkung von intensiven nah-infraroten (NIR) Laserpulsen mit molekularen Sauerstoff-Clustern, dass Phänomene eine wichtige Rolle spielen, die nur quantenmechanisch beschrieben werden können.


Abb. 1:

(a) Zweidimensionale Elektronen-Impulsabbildung emittiert von O2 Molekülen, die eine anisotrope Verteilung der Elektronen mit einem Maximum in paralleler (vertikal) Richtung zur NIR Laser Polarisationsrichtung zeigt. (b) Im entsprechenden kinetischen Energie-Spektrum ist die beobachtete Peak-Struktur zurückzuführen auf Ionisation oberhalb des Schwellenwertes sowie Freeman-Resonanzen. (c) Die Elektronen-Impulsabbildung von O2 Clustern mit einer durchschnittlichen Größe von 2400 Molekülen weist ein deutlich isotroperes Verhalten auf. (d) Im Spektrum der kinetischen Energie tauchen 3 Peaks auf, die Autoionisations-Prozessen zugeordnet werden können als Folge des Zerfalls von superangeregten atomaren Zuständen. MBI, Schütte

Zum ersten Mal wurde nun ein Beweis dafür gefunden, dass autoionisierende Zustände in Nanoplasmen auf effiziente Weise entstehen. Autoionisation dieser sogenannten superangeregten Zustände in atomarem Sauerstoff kann direkt auf einer Nanosekunden-Zeitskala beobachtet werden, während für Prozesse, die auf kürzeren Zeitskalen stattfinden, indirekte  Spuren sichtbar sind.

Autoionisation wird in verschiedenen Clustern beobachtet, und es wird erwartet, dass diese Prozesse auch wichtig sind für die Wechselwirkung von endlichen Systemen mit intensiven extrem-ultravioletten (XUV) und Röntgenpulsen von neuartigen Freie-Elektronen Lasern.

Als Folge der Wechselwirkung von intensiven Laserpulsen mit Clustern zeigen die gemessenen Elektronenspektren typischerweise eine kontinuierliche Verteilung. In der Vergangenheit führte das Fehlen von Spuren diskreter Zustände zu der Schlussfolgerung, dass die Dynamiken von geladenen Partikeln während der Cluster-Expansion gut durch ein vollständig klassisches Verhalten beschrieben werden können.

Eine Auswirkung davon ist, dass Simulationen, die die Wechselwirkung von intensiven Lasern mit Clustern, Nanopartikeln oder großen Molekülen modellieren, oft auf quasiklassische Ansätze zurückgreifen. Mit dem Aufkommen neuer Laserquellen und zeitaufgelöster Techniken innerhalb des letzten Jahres begann dieses Bild zu wackeln.

Kürzlich wurde über eine effiziente Erzeugung von angeregten Atomen in Nanoplasmen berichtet, die durch Elektronen-Ionen Rekombination ausgelöst wird. Wenn ein Atom mit 2 Elektronen in angeregten Zuständen entsteht, kann es durch Elektronen-Korrelation zerfallen, wobei ein Elektron in das Kontinuum emittiert wird, während das 2. Elektron in einen niedrigeren gebundenen Zustand relaxiert. Da jedoch die Elektronen, die in einem solchen Autoionisations-Prozess emittiert werden, kinetische Energie mit der Cluster-Umgebung austauschen, waren diese bisher nicht in Experimenten beobachtet worden.

In einer Kollaboration angeführt von Wissenschaftlern des Max-Born-Instituts wurde nun über den ersten Beweis für Autoionisation als Folge der Wechselwirkung zwischen intensiven NIR-Laserpulsen und Clustern berichtet. In der aktuellen Ausgabe von Physical Review Letters [114, 123002 (2015)] präsentieren Bernd Schütte, Marc Vrakking und Arnaud Rouzée sowie ihre Kollegen Jan Lahl, Tim Oelze und Maria Krikunova von der TU Berlin die Ergebnisse, die in Sauerstoff-Clustern erzielt wurden.

Dieses System wurde gewählt, weil bereits bekannt war, dass Sauerstoff-Atome langlebige autoionisierende Zustände aufweisen. In der aktuellen Studie wurden deutliche Peaks im Elektronen-Spektrum von Sauerstoff-Clustern beobachtet, die mit intensiven NIR-Pulsen ionisiert wurden (Abb. 1). Diese Peaks konnten gut bekannten autoionisierenden Zuständen zugeordnet werden, und es wurde gezeigt, dass sie auf einer Nanosekunden-Zeitskala zerfallen, wenn sich der Cluster bereits deutlich ausgedehnt hat. Deshalb war der Einfluss der Umgebung auf die Elektronen, die als Folge der Autoionisation emittiert wurden, vernachlässigbar.

Die beobachteten Beiträge der Autoionisation waren sehr empfindlich bezüglich der Intensität des NIR-Laserpulses. Bei größeren Intensitäten wurden die Autoionisations-Peaks verschmiert, waren jedoch immer noch sichtbar. Diese Ergebnisse deuten darauf hin, dass Autoionisation in vielen Experimenten eine wichtige Rolle spielt, in denen die Wechselwirkung von intensiven Laserpulsen mit Partikeln auf einer Nanometer-Skala untersucht wird, selbst dann, wenn diese Prozesse nicht direkt im Elektronen-Spektrum beobachtet werden können.

Bereits zuvor wurde gezeigt, dass die beobachtete Nanoplasma-Dynamik als Folge intensiver XUV und NIR Ionisation von Clustern ähnlich sind, weshalb erwartet wird, dass die aktuellen Ergebnisse auch eine hohe Relevanz für Experimente an neuartigen Freie-Elektronen Lasern haben. Die experimentellen Funde der Autoionisation sind des Weiteren wichtig, um theoretische Modelle von Nanoplasmen in der Zukunft zu verbessern und so ein besseres Verständnis über die zugrundeliegenden mikroskopischen Prozesse zu gewinnen.

Originalpublikation: Physical Review Letters

Vollständige Zitation:
Bernd Schütte, Jan Lahl, Tim Oelze, Maria Krikunova, Marc J. J. Vrakking and Arnaud Rouzée, "Efficient autoionization following intense laser-cluster interactions", Physical Review Letters 114, 123002 (2015)

doi: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.123002


Kontakt:
Dr. Bernd Schütte
Prof. Marc J. J. Vrakking
Dr. Arnaud Rouzée

Weitere Informationen:

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.123002
http://www.mbi-berlin.de

Saskia Donath | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten