Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kalte Fermionen gehen auf Abstand

04.01.2016

Wissenschaftlern am MPQ gelingt es, die „Pauli-Blockade“ zwischen fermionischen Lithium-Atomen in einem optischen Gitter direkt zu beobachten.

Im Mikrokosmos herrschen eigene Gesetze – die Regeln der Quantenmechanik. Sie beschreiben unter anderem das statistische Verhalten der Elementarteilchen. So gehören Elektronen und alle anderen Bausteine der Atome zur Gruppe der Fermionen, die niemals in allen Quantenzahlen übereinstimmen dürfen.


Fluoreszenzabbildung eines Bandisolators von fermionischem Lithium mit Einzel-Atom-Auflösung.

(Bild: MPQ, Abteilung Quanten-Vielteilchensysteme)

Dieses „Ausschließungsprinzip“ formulierte im Jahr 1925 der österreichische Physiker Wolfgang Pauli, um Aufbau und Stabilität der Atome zu erklären. Was damals postuliert und in elegante mathematische Gleichungen gegossen wurde, kann heute in quantenoptischen Experimenten überprüft werden.

Ein Durchbruch gelang jetzt Wissenschaftlern aus der Abteilung Quanten-Vielteilchensysteme von Prof. Immanuel Bloch am Max-Planck-Institut für Quantenoptik (PRL, 31. Dezember 2015, DOI:10.1103/PhysRevLett.115.263001).

Das Team um Projektleiter Dr. Christian Groß konnte erstmals die aus dem Ausschließungsprinzip folgende „Pauli-Blockade“ direkt beobachten. Dazu kühlten die Physiker ein Gas aus fermionischen Lithium-6-Atomen auf extrem tiefe Temperaturen ab und luden die kalten Teilchen in ein optisches Gitter.

Da gleichartige Fermionen nicht die gleichen Gitterplätze einnehmen dürfen, sollte sich jedes Atom seinen eigenen Platz aussuchen. Genau dies konnten die Wissenschaftler mit einem Quantengasmikroskop beobachten, das einzelne Atome mit entsprechender räumlicher Auflösung abbilden kann.

„Unser Erfolg beruht darauf, dass wir unsere an Bosonen erprobte Kühl- und Abbildungsmethode für Fermionen anpassen konnten“, erklärt Dr. Groß. „Unsere Arbeit gibt einen neuen Zugang, Quantenkorrelationen in fermionischer Quantenmaterie zu beobachten, oder Phänomene wie Quantenmagnetismus und Supraleitung besser zu verstehen.“

Die Quantenstatistik unterscheidet zwischen zwei grundlegend unterschiedlichen Sorten von Teilchen: den „geselligen“ Bosonen, die am absoluten Temperaturnullpunkt in einen einzigen Quantenzustand „kondensieren“, und den „einzelgängerischen“ Fermionen auf der anderen Seite, für die die mehrfache Besetzung eines einzelnen Zustandes verboten ist.

Bei der Arbeit mit Quantengasen haben die Wissenschaftler gewissermaßen die Qual der Wahl: Teilchen mit halbzahligem Spin zählen zu den Fermionen, Bosonen dagegen haben ganzzahligen Spin. Welcher Statistik – und damit welchem „Sozialverhalten“ – Atome gehorchen, ergibt sich also aus der Zahl ihrer Protonen, Neutronen und Elektronen.

Dem Ziel, das Verhalten von Elektronen in einem Festkörperkristall mit Atomen in optischen Gittern zu simulieren, kommt man mit Fermionen erheblich näher. Allerdings wurden in den meisten Experimenten bisher Bosonen bevorzugt, da sich Fermionen aus verschiedenen Gründen nur schwer auf die erforderlichen tiefen Temperaturen kühlen lassen.

Hier ist dem Team um Dr. Christian Groß in einem Experiment mit fermionischen Lithium-6-Atomen ein entscheidender Durchbruch gelungen, indem es effiziente Kühlmethoden und präzise Detektion zu kombinieren vermochte. Zunächst kühlen die Wissenschaftler die Atome mit verschiedenen Methoden ab und fangen sie in einer Dipolfalle ein.

Die bereits extrem kalte Wolke aus Lithium-Atomen wird dann mit Licht- und Magnetfeldern so präpariert, dass schließlich nur noch eine Ebene aus ca. 700 bis 800 Atomen übrig bleibt. Diesen wird ein optisches Gitter überlagert, das durch die Interferenz von Laserstrahlen erzeugt wird. Das Lichtgitter definiert die Kristallgeometrie und legt fest, wo sich die Atome aufhalten dürfen.

Der wirklich entscheidende und neue Schritt ist aber die Modifizierung des in der Gruppe entwickelten Quantengasmikroskops. Die Wissenschaftler wandten eine spezielle Kühlmethode, die ursprünglich für die Abkühlung von Ionen entwickelt wurde, auf Fermionen in einem Gitter an. Bei dieser besonderen Form der Laserkühlung werden die quantenmechanischen Schwingungszustände des Atoms in einem Gittertöpfchen so manipuliert, dass das Atom in den niedrigsten Zustand getrieben und somit gekühlt wird.

Bei dem Kühlprozess werden gleichzeitig Photonen an den Atomen gestreut, so dass diese wie kleine Nanoglühbirnen aufleuchten und einzeln beobachtet werden können. Ein hochauflösendes Mikroskopobjektiv kann dabei alle Atome gleichzeitig abbilden, und es kann so ein fotografischer Schnappschuss des atomaren Gases aufgenommen werden. Die Aufnahmen zeigen, dass die Teilchen im mittleren Bereich der Falle sehr gleichmäßig verteilt sind, bei einem Atom pro Gitterplatz. „Wichtig ist, dass diese Verteilung allein aufgrund der Quantenstatistik, d.h. des Pauli-Prinzips, zustande kommt“, betont Ahmed Omran, Doktorand am Experiment. „Identische Fermionen haben eine abstoßende Wirkung aufeinander, es gibt keine weitere Wechselwirkung zwischen den Atomen.“

In einem Festkörpergitterkristall bilden sich aufgrund der periodischen Anordnung der Atome „Bänder“ aus, in denen die Energieniveaus, die die Elektronen besetzen können, dicht benachbart liegen. Wenn im obersten sogenannten Valenzband alle Zustände besetzt sind, können sich Elektronen nicht bewegen – es handelt sich bei diesen Stoffen somit um Isolatoren. Der in dem Experiment erzeugte Quantenzustand des fermionischen Lithium-Systems verhält sich ganz analog: das Pauli-Prinzip führt zur vollen Besetzung des Valenzbandes und damit zur Unterdrückung der Leitfähigkeit. Unter dem Mikroskop äußert sich dies in einer starken Unterdrückung von Teilchenfluktuationen in der isolierenden Region.

Die neue Technik beinhaltet viele Möglichkeiten für weitere Experimente mit Quanten-Vielteilchensystemen aus fermionischen Atomen. Sie kann z.B. weiterentwickelt werden um einzelne Fermionen in einem Vielteilchensystem zu manipulieren, was eine Möglichkeit zum Erreichen noch tieferer Temperaturen darstellt. Bei diesen sollte sich erwartungsgemäß eine antiferromagnetische Ordnung ausbilden, die man mit dem Quantengasmikroskop direkt beobachten und charakterisieren kann. Gerade dieser Antiferromagnetismus wird als heißer Kandidat für die Erklärung grundlegender Supraleitungsphänomene gehandelt. Olivia Meyer-Streng

Originalveröffentlichung:

Ahmed Omran, Martin Boll, Timon Hilker, Katharina Kleinlein, Guillaume Salomon, Immanuel Bloch, and Christian Gross
Microscopic Observation of Pauli Blocking in Degenerate Fermionic Lattice Gases
Physical Review Letters, 31 December 2015, DOI:10.1103/PhysRevLett.115.263001

Kontakt:

Prof. Dr. Immanuel Bloch
Lehrstuhl für Quantenoptik, LMU München
Schellingstr. 4, 80799 München
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 -138
E-Mail: immanuel.bloch@mpq.mpg.de

Dr. Christian Groß
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
85748 Garching bei München
Telefon: +49 (0)89 32 905 - 713
E-Mail: christian.gross@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse-und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching b. München
Telefon: +49 (0)89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ein Wassertropfen als Modell für das Wechselspiel von Haftreibung und Adhäsion
30.06.2016 | Universität Zürich

nachricht Optische Linsen, so fein wie ein Haar - 3D Druck ermöglicht kleinste komplexe Mikro-Objektive
28.06.2016 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Gold und Diamanten das Erbgut entschlüsseln

Wissenschaftler der Universität Stuttgart entdecken neue Wege für DNA-Dechiffrierung

Forscherinnen und Forscher des Sonderforschungsbereichs (SFB) 716 der Universität Stuttgart haben möglicherweise einen Weg gefunden, genetische Informationen...

Im Focus: Thousands on one chip: New Method to study Proteins

Since the completion of the human genome an important goal has been to elucidate the function of the now known proteins: a new molecular method enables the investigation of the function for thousands of proteins in parallel. Applying this new method, an international team of researchers with leading participation of the Technical University of Munich (TUM) was able to identify hundreds of previously unknown interactions among proteins.

The human genome and those of most common crops have been decoded for many years. Soon it will be possible to sequence your personal genome for less than 1000...

Im Focus: Blick durch die Wolken: Augmented Reality ermöglicht Hubschraubereinsätze bei schlechter Sicht

Nebel, Schneesturm, Windböen – schlechtes Wetter macht die Einsätze von Rettungshubschraubern oft hoch riskant, mitunter sogar unmöglich. Ein neues Helmsichtgerät, das Forscher der Technischen Universität München (TUM) entwickelt haben, kann Piloten künftig helfen, auch bei extrem schlechter Sicht Hindernisse frühzeitig wahrzunehmen: Die dafür nötigen Informationen werden im Bordrechner erstellt und in eine Datenbrille eingespielt. Eine neue Studie beweist, dass diese erweiterte Realität, in Fachjargon Augmented Reality, die Leistung von Piloten steigert.

Dicke Wolken hängen über dem Tegernsee. Die Sichtweite beträgt nur wenige hundert Meter. Normalerweise dürfte ein Hubschrauber bei diesem Wetter nicht starten...

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED in der Praxis angekommen

Das vom Bundesministerium für Bildung und Forschung (BMBF) geförderte Gemeinschaftsprojekt R2D2 zur Analyse und Weiterentwicklung fertigungsnaherProzesse und Technologien zur Herstellung von flexiblen organischen Leuchtdioden (OLED) wurde erfolgreich beendet.

Im Gegensatz zu Punktlichtquellen wie LEDs aus Halbleiterkristallen sind organische Leuchtdioden, kurz OLED, Flächenlichtquellen: Ihr Licht erreicht eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Erstmals deutscher Ausrichtungsort: ACM MobiHoc 2016 vom 5. bis 8. Juli in Paderborn

30.06.2016 | Veranstaltungen

20. Business Forum Qualität: Smart Quality – QM im Zeitalter von Industrie 4.0

29.06.2016 | Veranstaltungen

Exotentagung: Vom Umgang mit Gecko, Schlange, Papagei

29.06.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Chromosomen: Proteinmantel sorgt für nötigen Abstand

30.06.2016 | Biowissenschaften Chemie

Neue zielgerichtete Therapie für Mastozytose entwickelt

30.06.2016 | Medizin Gesundheit

Erstmals deutscher Ausrichtungsort: ACM MobiHoc 2016 vom 5. bis 8. Juli in Paderborn

30.06.2016 | Veranstaltungsnachrichten