Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kalte Fermionen gehen auf Abstand

04.01.2016

Wissenschaftlern am MPQ gelingt es, die „Pauli-Blockade“ zwischen fermionischen Lithium-Atomen in einem optischen Gitter direkt zu beobachten.

Im Mikrokosmos herrschen eigene Gesetze – die Regeln der Quantenmechanik. Sie beschreiben unter anderem das statistische Verhalten der Elementarteilchen. So gehören Elektronen und alle anderen Bausteine der Atome zur Gruppe der Fermionen, die niemals in allen Quantenzahlen übereinstimmen dürfen.


Fluoreszenzabbildung eines Bandisolators von fermionischem Lithium mit Einzel-Atom-Auflösung.

(Bild: MPQ, Abteilung Quanten-Vielteilchensysteme)

Dieses „Ausschließungsprinzip“ formulierte im Jahr 1925 der österreichische Physiker Wolfgang Pauli, um Aufbau und Stabilität der Atome zu erklären. Was damals postuliert und in elegante mathematische Gleichungen gegossen wurde, kann heute in quantenoptischen Experimenten überprüft werden.

Ein Durchbruch gelang jetzt Wissenschaftlern aus der Abteilung Quanten-Vielteilchensysteme von Prof. Immanuel Bloch am Max-Planck-Institut für Quantenoptik (PRL, 31. Dezember 2015, DOI:10.1103/PhysRevLett.115.263001).

Das Team um Projektleiter Dr. Christian Groß konnte erstmals die aus dem Ausschließungsprinzip folgende „Pauli-Blockade“ direkt beobachten. Dazu kühlten die Physiker ein Gas aus fermionischen Lithium-6-Atomen auf extrem tiefe Temperaturen ab und luden die kalten Teilchen in ein optisches Gitter.

Da gleichartige Fermionen nicht die gleichen Gitterplätze einnehmen dürfen, sollte sich jedes Atom seinen eigenen Platz aussuchen. Genau dies konnten die Wissenschaftler mit einem Quantengasmikroskop beobachten, das einzelne Atome mit entsprechender räumlicher Auflösung abbilden kann.

„Unser Erfolg beruht darauf, dass wir unsere an Bosonen erprobte Kühl- und Abbildungsmethode für Fermionen anpassen konnten“, erklärt Dr. Groß. „Unsere Arbeit gibt einen neuen Zugang, Quantenkorrelationen in fermionischer Quantenmaterie zu beobachten, oder Phänomene wie Quantenmagnetismus und Supraleitung besser zu verstehen.“

Die Quantenstatistik unterscheidet zwischen zwei grundlegend unterschiedlichen Sorten von Teilchen: den „geselligen“ Bosonen, die am absoluten Temperaturnullpunkt in einen einzigen Quantenzustand „kondensieren“, und den „einzelgängerischen“ Fermionen auf der anderen Seite, für die die mehrfache Besetzung eines einzelnen Zustandes verboten ist.

Bei der Arbeit mit Quantengasen haben die Wissenschaftler gewissermaßen die Qual der Wahl: Teilchen mit halbzahligem Spin zählen zu den Fermionen, Bosonen dagegen haben ganzzahligen Spin. Welcher Statistik – und damit welchem „Sozialverhalten“ – Atome gehorchen, ergibt sich also aus der Zahl ihrer Protonen, Neutronen und Elektronen.

Dem Ziel, das Verhalten von Elektronen in einem Festkörperkristall mit Atomen in optischen Gittern zu simulieren, kommt man mit Fermionen erheblich näher. Allerdings wurden in den meisten Experimenten bisher Bosonen bevorzugt, da sich Fermionen aus verschiedenen Gründen nur schwer auf die erforderlichen tiefen Temperaturen kühlen lassen.

Hier ist dem Team um Dr. Christian Groß in einem Experiment mit fermionischen Lithium-6-Atomen ein entscheidender Durchbruch gelungen, indem es effiziente Kühlmethoden und präzise Detektion zu kombinieren vermochte. Zunächst kühlen die Wissenschaftler die Atome mit verschiedenen Methoden ab und fangen sie in einer Dipolfalle ein.

Die bereits extrem kalte Wolke aus Lithium-Atomen wird dann mit Licht- und Magnetfeldern so präpariert, dass schließlich nur noch eine Ebene aus ca. 700 bis 800 Atomen übrig bleibt. Diesen wird ein optisches Gitter überlagert, das durch die Interferenz von Laserstrahlen erzeugt wird. Das Lichtgitter definiert die Kristallgeometrie und legt fest, wo sich die Atome aufhalten dürfen.

Der wirklich entscheidende und neue Schritt ist aber die Modifizierung des in der Gruppe entwickelten Quantengasmikroskops. Die Wissenschaftler wandten eine spezielle Kühlmethode, die ursprünglich für die Abkühlung von Ionen entwickelt wurde, auf Fermionen in einem Gitter an. Bei dieser besonderen Form der Laserkühlung werden die quantenmechanischen Schwingungszustände des Atoms in einem Gittertöpfchen so manipuliert, dass das Atom in den niedrigsten Zustand getrieben und somit gekühlt wird.

Bei dem Kühlprozess werden gleichzeitig Photonen an den Atomen gestreut, so dass diese wie kleine Nanoglühbirnen aufleuchten und einzeln beobachtet werden können. Ein hochauflösendes Mikroskopobjektiv kann dabei alle Atome gleichzeitig abbilden, und es kann so ein fotografischer Schnappschuss des atomaren Gases aufgenommen werden. Die Aufnahmen zeigen, dass die Teilchen im mittleren Bereich der Falle sehr gleichmäßig verteilt sind, bei einem Atom pro Gitterplatz. „Wichtig ist, dass diese Verteilung allein aufgrund der Quantenstatistik, d.h. des Pauli-Prinzips, zustande kommt“, betont Ahmed Omran, Doktorand am Experiment. „Identische Fermionen haben eine abstoßende Wirkung aufeinander, es gibt keine weitere Wechselwirkung zwischen den Atomen.“

In einem Festkörpergitterkristall bilden sich aufgrund der periodischen Anordnung der Atome „Bänder“ aus, in denen die Energieniveaus, die die Elektronen besetzen können, dicht benachbart liegen. Wenn im obersten sogenannten Valenzband alle Zustände besetzt sind, können sich Elektronen nicht bewegen – es handelt sich bei diesen Stoffen somit um Isolatoren. Der in dem Experiment erzeugte Quantenzustand des fermionischen Lithium-Systems verhält sich ganz analog: das Pauli-Prinzip führt zur vollen Besetzung des Valenzbandes und damit zur Unterdrückung der Leitfähigkeit. Unter dem Mikroskop äußert sich dies in einer starken Unterdrückung von Teilchenfluktuationen in der isolierenden Region.

Die neue Technik beinhaltet viele Möglichkeiten für weitere Experimente mit Quanten-Vielteilchensystemen aus fermionischen Atomen. Sie kann z.B. weiterentwickelt werden um einzelne Fermionen in einem Vielteilchensystem zu manipulieren, was eine Möglichkeit zum Erreichen noch tieferer Temperaturen darstellt. Bei diesen sollte sich erwartungsgemäß eine antiferromagnetische Ordnung ausbilden, die man mit dem Quantengasmikroskop direkt beobachten und charakterisieren kann. Gerade dieser Antiferromagnetismus wird als heißer Kandidat für die Erklärung grundlegender Supraleitungsphänomene gehandelt. Olivia Meyer-Streng

Originalveröffentlichung:

Ahmed Omran, Martin Boll, Timon Hilker, Katharina Kleinlein, Guillaume Salomon, Immanuel Bloch, and Christian Gross
Microscopic Observation of Pauli Blocking in Degenerate Fermionic Lattice Gases
Physical Review Letters, 31 December 2015, DOI:10.1103/PhysRevLett.115.263001

Kontakt:

Prof. Dr. Immanuel Bloch
Lehrstuhl für Quantenoptik, LMU München
Schellingstr. 4, 80799 München
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 -138
E-Mail: immanuel.bloch@mpq.mpg.de

Dr. Christian Groß
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
85748 Garching bei München
Telefon: +49 (0)89 32 905 - 713
E-Mail: christian.gross@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse-und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching b. München
Telefon: +49 (0)89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Topologische Isolatoren: Neuer Phasenübergang entdeckt
17.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Vorhersagen bestätigt: Schwere Elemente bei Neutronensternverschmelzungen nachgewiesen
17.10.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Sicheres Bezahlen ohne Datenspur

17.10.2017 | Informationstechnologie

Pflanzen gegen Staunässe schützen

17.10.2017 | Biowissenschaften Chemie

Den Trends der Umweltbranche auf der Spur

17.10.2017 | Ökologie Umwelt- Naturschutz