Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kalte Fermionen gehen auf Abstand

04.01.2016

Wissenschaftlern am MPQ gelingt es, die „Pauli-Blockade“ zwischen fermionischen Lithium-Atomen in einem optischen Gitter direkt zu beobachten.

Im Mikrokosmos herrschen eigene Gesetze – die Regeln der Quantenmechanik. Sie beschreiben unter anderem das statistische Verhalten der Elementarteilchen. So gehören Elektronen und alle anderen Bausteine der Atome zur Gruppe der Fermionen, die niemals in allen Quantenzahlen übereinstimmen dürfen.


Fluoreszenzabbildung eines Bandisolators von fermionischem Lithium mit Einzel-Atom-Auflösung.

(Bild: MPQ, Abteilung Quanten-Vielteilchensysteme)

Dieses „Ausschließungsprinzip“ formulierte im Jahr 1925 der österreichische Physiker Wolfgang Pauli, um Aufbau und Stabilität der Atome zu erklären. Was damals postuliert und in elegante mathematische Gleichungen gegossen wurde, kann heute in quantenoptischen Experimenten überprüft werden.

Ein Durchbruch gelang jetzt Wissenschaftlern aus der Abteilung Quanten-Vielteilchensysteme von Prof. Immanuel Bloch am Max-Planck-Institut für Quantenoptik (PRL, 31. Dezember 2015, DOI:10.1103/PhysRevLett.115.263001).

Das Team um Projektleiter Dr. Christian Groß konnte erstmals die aus dem Ausschließungsprinzip folgende „Pauli-Blockade“ direkt beobachten. Dazu kühlten die Physiker ein Gas aus fermionischen Lithium-6-Atomen auf extrem tiefe Temperaturen ab und luden die kalten Teilchen in ein optisches Gitter.

Da gleichartige Fermionen nicht die gleichen Gitterplätze einnehmen dürfen, sollte sich jedes Atom seinen eigenen Platz aussuchen. Genau dies konnten die Wissenschaftler mit einem Quantengasmikroskop beobachten, das einzelne Atome mit entsprechender räumlicher Auflösung abbilden kann.

„Unser Erfolg beruht darauf, dass wir unsere an Bosonen erprobte Kühl- und Abbildungsmethode für Fermionen anpassen konnten“, erklärt Dr. Groß. „Unsere Arbeit gibt einen neuen Zugang, Quantenkorrelationen in fermionischer Quantenmaterie zu beobachten, oder Phänomene wie Quantenmagnetismus und Supraleitung besser zu verstehen.“

Die Quantenstatistik unterscheidet zwischen zwei grundlegend unterschiedlichen Sorten von Teilchen: den „geselligen“ Bosonen, die am absoluten Temperaturnullpunkt in einen einzigen Quantenzustand „kondensieren“, und den „einzelgängerischen“ Fermionen auf der anderen Seite, für die die mehrfache Besetzung eines einzelnen Zustandes verboten ist.

Bei der Arbeit mit Quantengasen haben die Wissenschaftler gewissermaßen die Qual der Wahl: Teilchen mit halbzahligem Spin zählen zu den Fermionen, Bosonen dagegen haben ganzzahligen Spin. Welcher Statistik – und damit welchem „Sozialverhalten“ – Atome gehorchen, ergibt sich also aus der Zahl ihrer Protonen, Neutronen und Elektronen.

Dem Ziel, das Verhalten von Elektronen in einem Festkörperkristall mit Atomen in optischen Gittern zu simulieren, kommt man mit Fermionen erheblich näher. Allerdings wurden in den meisten Experimenten bisher Bosonen bevorzugt, da sich Fermionen aus verschiedenen Gründen nur schwer auf die erforderlichen tiefen Temperaturen kühlen lassen.

Hier ist dem Team um Dr. Christian Groß in einem Experiment mit fermionischen Lithium-6-Atomen ein entscheidender Durchbruch gelungen, indem es effiziente Kühlmethoden und präzise Detektion zu kombinieren vermochte. Zunächst kühlen die Wissenschaftler die Atome mit verschiedenen Methoden ab und fangen sie in einer Dipolfalle ein.

Die bereits extrem kalte Wolke aus Lithium-Atomen wird dann mit Licht- und Magnetfeldern so präpariert, dass schließlich nur noch eine Ebene aus ca. 700 bis 800 Atomen übrig bleibt. Diesen wird ein optisches Gitter überlagert, das durch die Interferenz von Laserstrahlen erzeugt wird. Das Lichtgitter definiert die Kristallgeometrie und legt fest, wo sich die Atome aufhalten dürfen.

Der wirklich entscheidende und neue Schritt ist aber die Modifizierung des in der Gruppe entwickelten Quantengasmikroskops. Die Wissenschaftler wandten eine spezielle Kühlmethode, die ursprünglich für die Abkühlung von Ionen entwickelt wurde, auf Fermionen in einem Gitter an. Bei dieser besonderen Form der Laserkühlung werden die quantenmechanischen Schwingungszustände des Atoms in einem Gittertöpfchen so manipuliert, dass das Atom in den niedrigsten Zustand getrieben und somit gekühlt wird.

Bei dem Kühlprozess werden gleichzeitig Photonen an den Atomen gestreut, so dass diese wie kleine Nanoglühbirnen aufleuchten und einzeln beobachtet werden können. Ein hochauflösendes Mikroskopobjektiv kann dabei alle Atome gleichzeitig abbilden, und es kann so ein fotografischer Schnappschuss des atomaren Gases aufgenommen werden. Die Aufnahmen zeigen, dass die Teilchen im mittleren Bereich der Falle sehr gleichmäßig verteilt sind, bei einem Atom pro Gitterplatz. „Wichtig ist, dass diese Verteilung allein aufgrund der Quantenstatistik, d.h. des Pauli-Prinzips, zustande kommt“, betont Ahmed Omran, Doktorand am Experiment. „Identische Fermionen haben eine abstoßende Wirkung aufeinander, es gibt keine weitere Wechselwirkung zwischen den Atomen.“

In einem Festkörpergitterkristall bilden sich aufgrund der periodischen Anordnung der Atome „Bänder“ aus, in denen die Energieniveaus, die die Elektronen besetzen können, dicht benachbart liegen. Wenn im obersten sogenannten Valenzband alle Zustände besetzt sind, können sich Elektronen nicht bewegen – es handelt sich bei diesen Stoffen somit um Isolatoren. Der in dem Experiment erzeugte Quantenzustand des fermionischen Lithium-Systems verhält sich ganz analog: das Pauli-Prinzip führt zur vollen Besetzung des Valenzbandes und damit zur Unterdrückung der Leitfähigkeit. Unter dem Mikroskop äußert sich dies in einer starken Unterdrückung von Teilchenfluktuationen in der isolierenden Region.

Die neue Technik beinhaltet viele Möglichkeiten für weitere Experimente mit Quanten-Vielteilchensystemen aus fermionischen Atomen. Sie kann z.B. weiterentwickelt werden um einzelne Fermionen in einem Vielteilchensystem zu manipulieren, was eine Möglichkeit zum Erreichen noch tieferer Temperaturen darstellt. Bei diesen sollte sich erwartungsgemäß eine antiferromagnetische Ordnung ausbilden, die man mit dem Quantengasmikroskop direkt beobachten und charakterisieren kann. Gerade dieser Antiferromagnetismus wird als heißer Kandidat für die Erklärung grundlegender Supraleitungsphänomene gehandelt. Olivia Meyer-Streng

Originalveröffentlichung:

Ahmed Omran, Martin Boll, Timon Hilker, Katharina Kleinlein, Guillaume Salomon, Immanuel Bloch, and Christian Gross
Microscopic Observation of Pauli Blocking in Degenerate Fermionic Lattice Gases
Physical Review Letters, 31 December 2015, DOI:10.1103/PhysRevLett.115.263001

Kontakt:

Prof. Dr. Immanuel Bloch
Lehrstuhl für Quantenoptik, LMU München
Schellingstr. 4, 80799 München
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 -138
E-Mail: immanuel.bloch@mpq.mpg.de

Dr. Christian Groß
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
85748 Garching bei München
Telefon: +49 (0)89 32 905 - 713
E-Mail: christian.gross@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse-und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching b. München
Telefon: +49 (0)89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Terahertz-Quelle: kompakt und kostensparend
24.05.2016 | Forschungszentrum Jülich

nachricht Spinströme: Riesengroß und ultraschnell
23.05.2016 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit atomarer Präzision: Technologien für die übernächste Chipgeneration

Im Projekt »Beyond EUV« entwickeln die Fraunhofer-Institute für Lasertechnik ILT in Aachen und für angewandte Optik und Feinmechanik IOF in Jena wesentliche Technologien zur Fertigung einer neuen Generation von Mikrochips mit EUV-Strahlung bei 6,7 nm. Die Strukturen sind dann kaum noch dicker als einzelne Atome und ermöglichen besonders hoch integrierte Schaltkreise zum Beispiel für Wearables oder gedankengesteuerte Prothesen.

Gordon Moore formulierte 1965 das später nach ihm benannte Gesetz, wonach sich alle ein bis zwei Jahre die Komplexität integrierter Schaltungen verdoppelt. Er...

Im Focus: Ein negatives Enzym liefert positive Resultate

In den letzten zwanzig Jahren hat die Chemie viele wichtige Instrumente und Verfahren für die Biologie hervorgebracht. Heute können wir Proteine herstellen, die in der Natur bisher nicht vorkommen. Es lassen sich Bilder von Ausschnitten lebender Zellen aufnehmen und sogar einzelne Zellen in lebendigen Tieren beobachten. Diese Woche haben zwei Forschungsgruppen der Universitäten Basel und Genf, die beide dem Nationalen Forschungsschwerpunkt Molecular Systems Engineering angehören, im Forschungsmagazin «ACS Central Science» präsentiert, wie man ein nicht-natürliches Protein designt, das völlig neue Fähigkeiten aufweist.

Proteine sind die Arbeitspferde jeder Zelle. Sie bestehen aus Aminosäurebausteinen, die als Kette verbunden sind, welche sich zu funktionalen Maschinen...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: FS POSEIDON startet zur 500. Expedition

Das am GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel beheimatete Forschungsschiff POSEIDON startet diese Woche zu seiner 500. Expedition. Während der Jubiläumsfahrt untersuchen und kartieren Meeresgeologen des MARUM – Zentrum für Marine Umweltwissenschaften der Universität Bremen den Kontinentalhang vor der südfranzösischen Hafenstadt Nizza. Ziel der Arbeiten ist es, die Gefahr von Hangrutschungen und letztendlich auch Tsunamis besser abschätzen zu können.

Am kommenden Mittwoch heißt es wieder einmal „Leinen los“ für die POSEIDON. Von Catania auf Sizilien aus nimmt das 60 Meter lange Forschungsschiff Kurs auf die...

Im Focus: Spinströme: Riesengroß und ultraschnell

Mit einer neuen Methode der TU Wien lassen sich extrem starke Spinströme herstellen. Sie sind wichtig für die Spintronik, die unsere herkömmliche Elektronik ablösen könnte.

In unseren Computerchips wird Information in Form von elektrischer Ladung übertragen. Elektronen oder andere Ladungsträger werden von einem Ort zum anderen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Zukunftsforum Assekuranz“ 2016 am 21. und 22. Juni 2016 in Köln

24.05.2016 | Veranstaltungen

Chemische Biologie im Fokus

24.05.2016 | Veranstaltungen

Innovationen für Laserexperten und Anwender - Universität Stuttgart bei Stuttgarter Lasertagen 2016

24.05.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neuartige Terahertz-Quelle: kompakt und kostensparend

24.05.2016 | Physik Astronomie

Baufritz-Musterhaus „NaturDesign“ übt sich in Understatement: Gesundes Wohnen mit Stil

24.05.2016 | Architektur Bauwesen

„Zukunftsforum Assekuranz“ 2016 am 21. und 22. Juni 2016 in Köln

24.05.2016 | Veranstaltungsnachrichten