Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kalte Atome machen Mikrowellenfelder sichtbar

03.08.2010
MPQ-LMU-Wissenschaftler Team verwendet kalte Atomwolken für die Abbildung von Mikrowellenfeldern.

Mikrowellen sind aus der modernen Kommunikationstechnologie nicht mehr wegzudenken. So enthalten beispielsweise Mobiltelefone und Laptops integrierte Mikrowellenschaltkreise für die Kommunikation mit Drahtlosnetzwerken. Für die Entwicklung solcher Schaltkreise werden ausgefeilte Techniken benötigt, welche die Mikrowellenfelder messen und charakterisieren.

Eine Gruppe von Wissenschaftlern um Prof. Theodor W. Hänsch (Max-Planck-Institut für Quantenoptik und Ludwig-Maximilians-Universität München (LMU)) und Prof. Philipp Treutlein (Universität Basel) hat nun eine neuartige Methode entwickelt, die es erlaubt, Mikrowellen-Magnetfelder vollständig und mit hoher Ortsauflösung direkt abzubilden. Als „Sensoren“ für die Mikrowellenfelder dienen dabei Wolken von ultrakalten Atomen. Die Arbeit erscheint als Titel der aktuellen Ausgabe von Applied Physics Letters (Appl. Phys. Lett. 97, (2010)).

Die moderne drahtlose Kommunikation beruht auf der Übertragung von Informationen mit Radiofrequenz- und Mikrowellen. Integrierte Mikrowellenschaltkreise in Geräten wie Mobiltelefonen und WLAN-fähigen Laptops dekodieren und verarbeiten die Information. Bei der Entwicklung solcher Schaltkreise werden Computersimulationen eingesetzt. Da moderne Schaltkreise eine sehr große Zahl von Komponenten enthalten, können die Mikrowellenfelder jedoch nur näherungsweise simuliert werden. Letztendlich sind Messungen nötig, um Gewissheit über die Funktion der Schaltkreise und eventuelle Störungen bei der Übertragung zu erhalten.

Um Mikrowellenschaltkreise gezielt zu überprüfen und zu verbessern, möchte man idealerweise sämtliche Komponenten der Mikrowellenfelder direkt und mit möglichst hoher Ortsauflösung abbilden. Bei den existierenden Verfahren wird das zu vermessende Feld Punkt-für-Punkt abgerastert, was einige Zeit in Anspruch nimmt. Die meisten Verfahren können dabei lediglich die Amplituden, nicht aber die Phasen der Mikrowellenfelder bestimmen. Weitere Probleme sind, dass das zu vermessende Feld durch die Verwendung von makroskopischen Sonden leicht gestört werden kann und die Ortsauflösung relativ gering ist.

Wissenschaftler des Max-Planck-Instituts für Quantenoptik, der LMU München und der Universität Basel haben nun eine neue Methode zur Abbildung der Magnetfeldkomponenten von Mikrowellen entwickelt. Als Sonden für das Mikrowellenfeld verwenden sie dabei kleine Wolken von ultrakalten Atomen, die sie zuvor mit Hilfe von Methoden der Laserkühlung auf Temperaturen von wenigen Millionstel Grad über dem absoluten Nullpunkt abgekühlt haben. Bei diesen Temperaturen gehorchen die Atome den Gesetzen der Quantenphysik und reagieren sehr empfindlich auf angelegte äußere Felder, was sie zu idealen Sensoren macht. Mit Hilfe von statischen Magnetfeldern werden die Atome am gewünschten Ort über dem Mikrowellenschaltkreis positioniert und das zu vermessende Mikrowellenfeld wird angelegt.

„Die Atome ändern ihren inneren Zustand, wenn sie sich in einem Mikrowellenfeld befinden“, erklärt Pascal Böhi, der die Methode im Rahmen seiner Doktorarbeit mit entwickelt hat. „Diese Zustandsänderung können wir mit einer CCD-Kamera mit hoher Ortsauflösung abbilden. Je stärker das Mikrowellenfeld an einem gegebenen Ort ist, desto schneller ändert sich dort der Zustand der Atome.“ Eine Besonderheit der neuen Methode liegt darin, dass das Mikrowellenfeld nicht Punkt-für-Punkt abgerastert werden muss. Vielmehr lässt sich in einer einzigen Messung bereits ein komplettes Bild einer Feldkomponente in einer Ebene aufnehmen. Dies beschleunigt die Aufnahme der Daten erheblich. Außerdem ermöglicht die Technik nicht nur die Rekonstruktion der Amplituden, sondern auch der Phasen des Mikrowellenfeldes. Da die Atome mikroskopisch klein sind, stören sie den zu vermessenden Mikrowellenschaltkreis im Gegensatz zu makroskopischen Messköpfen nicht. Die neue Methode kann bei unterschiedlichen Frequenzen im Gigahertz-Bereich verwendet werden.

„Um von der ersten Umsetzung im Labor zu kommerziellen Anwendungen zu kommen, ist natürlich noch weitere Entwicklungsarbeit nötig“, so Philipp Treutlein, der Leiter der Projekts. Allerdings wurde vor kurzem bereits ein sehr kompakter und portabler Aufbau für Experimente mit ultrakalten Atomen realisiert, der für solche Anwendungen interessant sein könnte. Die Apparatur selbst hat Raumtemperatur, lediglich die darin gespeicherten Atome werden mit Hilfe von Lasern abgekühlt, was nur wenige Sekunden in Anspruch nimmt. Die wesentlichen Komponenten solcher Aufbauten sind mittlerweile kommerziell erhältlich. Wegen der möglichen Anwendungen haben die Wissenschaftler ihre neue Methode zur Abbildung von Mikrowellenfeldern zum Patent angemeldet. [Philipp Treutlein]

Originalveröffentlichung:
Pascal Böhi, Max F. Riedel, Theodor W. Hänsch, und Philipp Treutlein
Imaging of microwave fields using ultracold atoms
Applied Physics Letters 97, (2010).
doi:10.1063/1.3470591
Kontakt:
Prof. Dr. Philipp Treutlein
Max-Planck-Institut für Quantenoptik
und LMU München, Fakultät für Physik
Schellingstr. 4/III, 80799 München
Tel.: +49-(0)89-2180-3937
E-Mail: treutlein@lmu.de
www.munichatomchip.de
Universität Basel, Departement Physik
Klingelbergstrasse 82, CH-4056 Basel
E-Mail: philipp.treutlein@unibas.ch
www.atom.physik.unibas.ch
Prof. Dr. Theodor W. Hänsch
Lehrstuhl für Experimentalphysik, LMU München
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1, 85748 Garching
Tel.: +49-(0)89-32905-702/712
E-Mail: t.w.haensch@mpq.mpg.de
Dipl.-Phys. Pascal Böhi
Max-Planck-Institut für Quantenoptik
und LMU München, Fakultät für Physik
Schellingstr. 4/III, 80799 München
Tel.: +49-(0)89-2180-3703
E-Mail: pascal.boehi@physik.lmu.de
Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Tel.: +49 - 89 / 32905 - 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | idw
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie