Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

ITER: Grünes Licht für Wolfram-Divertor

09.08.2013
Das internationale Fusionsexperiment ITER könnte nach umfangreichen Untersuchungen und Diskussionen nun von Anfang an mit einem Divertor aus Wolfram ausgestattet werden.
Zu diesem Ergebnis kam ein eigens zu diesem Thema eingerichtetes Final Design Review auf einem Treffen Ende Juni 2013. ITER ist der nächste große Schritt der Fusionsforschung. Mit einer Leistung von 500 Millionen Watt soll es die Energiegewinnung aus der Verschmelzung von Atomkernen erstmals im Kraftwerksmaßstab demonstrieren.

Der ITER-Divertor befindet sich im unteren Teil der Brennkammer. Die Komponente wird unter anderem zum Kühlen und Abtrennen von Heliumatomen aus dem Plasma eingesetzt, die bei der Fusionsreaktion entstehen. Da es an einigen Stellen zum gewollten Kontakt mit dem mehr als 100 Millionen Grad heißen Plasma kommt, muss das Bauteil extrem hitzebeständig ausgelegt werden und über eine effiziente Wasserkühlung verfügen.

Ursprünglich sahen Wissenschaftler und Ingenieure zur Inbetriebnahme von ITER einen Divertor aus faserverstärktem Grafit vor: ein hitzefestes Material, das die Plasmaeigenschaften positiv beeinflusst. Grafit geht aber auch ungewünschte chemische Reaktionen ein und reichert sich mit radioaktivem Tritium an. Für den Dauerbetrieb sollte der Divertor daher erst zu einem späteren Zeitpunkt durch eine ausschließlich aus Wolfram gefertigte Variante ersetzt werden: das Element mit dem höchsten Schmelzpunkt, das die Fusionsreaktion aber schon durch kleinste Verunreinigungskonzentration gefährden kann.

Aufgrund des eingeschränkten Budgets fassten die Organisatoren von ITER ab September 2011 einen Verzicht auf den Grafit-Divertor ins Auge. „Insbesondere nach den letztjährigen Testläufen an der neu fertig gestellten ITER Divertor Test Facility in Russland sind wir optimistisch, direkt mit einem Divertor aus Wolfram starten zu können“, berichtet der Leiter der Final Design Review, Dr. Philippe Mertens vom Forschungszentrum Jülich.

Von Jülicher Wissenschaftlern entwickelte „ITER-like Wall“ im Fusionsexperiment JET: Die Lamellenstruktur aus Wolfram im unteren Bildbereich ist zur Kenntlichmachung rot eingefärbt. Sie befindet sich an denjenigen Stellen der Brennkammer, die am höchsten mit der viele Millionen Grad heißen Fusionsmaterie belastet werden: im sogenannten „Divertor“. JET zeigt den Weg mit denselben Materialien wie vorgesehen, wenn ITER mit einem Divertor vollständig aus Wolfram ausgestattet wird.
Quelle: EFDA-JET

Ein Prototyp aus massivem Wolfram wurde in Tausenden Testzyklen Wärmeflüssen von bis zu 20 Megawatt pro Quadratmeter ausgesetzt – zehnmal größer als diejenigen in einer Flugzeugturbine oder an den Kernbrennstäben eines Spaltungsreaktors – ohne nennenswertes Materialversagen aufzuweisen. „Das Design der Wolframblöcke bedarf nur noch einer Verfeinerung der ausgeklügelten Geometrie, damit keine scharfen Metallkanten dem Plasma exponiert werden.“

Die Ergebnisse sollen im Oktober 2013 dem ITER Council Science and Technology Advisory Committee (STAC) präsentiert werden. Dort werden die Weichen für die weitere Entwicklung von ITER gestellt.

ITER Newsline #274 vom 1. Juli 2013 – "Design Review for tungsten divertor shows way ahead":
http://www.iter.org/newsline/274/1639

Informationen zum Institut für Energie- und Klimaforschung, Bereich Plasmaphysik (IEK-4):

http://www.fz-juelich.de/iek/iek-4/

Erhard Zeiss | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics