Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Ionen sich näher kommen: RUB-Forscher entdecken neue physikalische Anziehungskraft

26.03.2012
Neue physikalische Anziehungskraft in Quanten-Plasmen
RUB-Physiker entdecken unbekanntes Negativ-Potential auf Nano-Skalen

Heutzutage sind immer kleinere und leistungsstärkere Computerchips gefragt. Physiker der RUB haben eine neue physikalische Anziehungskraft entdeckt, die diesen Fortschritt beschleunigt. Prof. Dr. Padma Kant Shukla und Dr. Bengt Eliasson fanden ein bisher nicht bekanntes Phänomen in Quanten-Plasmen.

Ein negativ geladenes Potential ermöglicht es, innerhalb des Plasmas positiv geladene Teilchen (Ionen) in atom-ähnlichen Strukturen zu bündeln. Dadurch kann Strom wesentlich schneller und effizienter geleitet werden als bisher und es eröffnen sich neue Perspektiven für Nanotechnologien. Über ihre Ergebnisse berichten die Forscher in Physical Review Letters (der Beitrag erscheint am 13. April).

Elektronen und Ionen in gewöhnlichen Plasmen

Ein gewöhnliches Plasma ist ein ionisiertes elektrisch leitendes Gas, bestehend aus positiven (Ionen) und negativen Ladungsträgern (sog. nicht entarteten Elektronen). Es ist der Hauptbestandteil unseres Sonnensystems. Auf der Erde können solche Plasmen unter anderem zur Energiegewinnung in kontrollierten thermonuklearen Fusions-Plasmen, ähnlich der Sonne, oder aber auch zur Krankheitsbekämpfung in der Medizin genutzt werden.

Neuer Effekt auf atomaren Skalen in Quanten-Plasmen

Quanten-Plasmen erweitern den Anwendungsbereich auf Nano-Skalen, wenn quanten-mechanische-Effekte an Bedeutung gewinnen. Das ist der Fall, wenn im Vergleich zu gewöhnlichen Plasmen die Plasma-Dichte sehr hoch und die Temperatur niedrig ist. Dann tritt das neu entdeckte Potential auf, das durch kollektive Wechselwirkungsprozesse entarteter Elektronen mit dem Quanten-Plasma entsteht. Solche Plasmen finden sich z.B. in Kernen von Sternen mit versiegendem nuklearen Energievorrat (Weiße Zwerge) oder sie können künstlich im Labor mit Hilfe von Laser-Bestrahlungen erzeugt werden. Das neue negative Potential führt zu einer anziehenden Kraft zwischen den Ionen, die sich dann zu Gittern formieren. Sie werden komprimiert und die Abstände zwischen ihnen verkürzt, so dass Strom weitaus schneller hindurch fließen kann.

Mikrochips und Halbleiter

Die Erkenntnisse der Bochumer Wissenschaftler eröffnen die Möglichkeit der Ionen-Kristallisation auf der Größenskala eines Atoms. Sie begründen damit eine neue Richtung der Forschung, die in der Lage ist verschiedene Disziplinen der Physik miteinander zu verknüpfen. Anwendungsmöglichkeiten sind beispielsweise Mikrochips für Quanten-Computer, Halbleiter, dünne Metallfolien oder auch metallische Nanostrukturen.

Titelaufnahme

P. K. Shukla, B. Eliasson (2012): Novel Attractive Force Between Ions in Quantum Plasmas, Physical Review Letters (in print)

Weitere Informationen

Prof. Dr. Dr. h. c. mult. Padma Kant Shukla, RUB International Chair, Fakultät für Physik und Astronomie der Ruhr-Universität Bochum, 0234/32-23759, profshukla@yahoo.de

Redaktion: Marie-Astrid Reinartz

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht Einblicke ins Atom
23.01.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie