Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Internationales Forscherteam entdeckt am BES-III-Experiment in Peking ein neues exotisches Teilchen

27.03.2013
Beteiligung der Johannes Gutenberg-Universität Mainz im Rahmen des Sonderforschungsbereichs 1044 der Deutschen Forschungsgemeinschaft

Ein internationales Team von Wissenschaftlern, die das BES-III-Experiment in Peking am Elektron-Positron-Beschleuniger BEPC-II betreiben, hat die Entdeckung eines neuen Teilchens verkündet.


BES-III-Detektor am Pekinger Institut für Hochenergiephysik (IHEP)
©: Institute for High Energy Physics (IHEP), Peking

Das subatomare Teilchen mit der Bezeichnung Zc(3900) besitzt eine Masse, die ungefähr der eines Helium-Kerns entspricht und hat eine Lebensdauer von 10-23 Sekunden, also Bruchteile einer Milliardstel Mikrosekunde. Die Johannes Gutenberg-Universität Mainz (JGU) ist am BES-III-Experiment im Rahmen des von der Deutschen Forschungsgemeinschaft (DFG) geförderten Sonderforschungsbereichs 1044 – „Die Niederenergie-Grenze des Standardmodells:

Von Quarks und Gluonen zu Hadronen und Kernen“ beteiligt. Die Mainzer Beiträge zu BES-III sind auch Bestandteil des Exzellenzclusters PRISMA der JGU, der kürzlich in die Förderung der Bundesexzellenzinitiative aufgenommen wurde.

Die am BES-III-Experiment beteiligten Wissenschaftler hatten Ende Dezember 2012 eine Reihe dedizierter Untersuchungen des ebenfalls unverstandenen Teilchens Y(4260) begonnen, das ursprünglich im Jahr 2005 am SLAC National Laboratory in Stanford in Kalifornien entdeckt wurde. Aufgrund der Tatsache, dass dieses Teilchen im Gegensatz zu Vorgängerexperimenten am BES-III-Experiment in direkter Produktion am Beschleuniger erzeugt werden kann, konnte bereits zwei Wochen nach Beginn der Messungen die Statistik aller existierenden Vorgängermessungen übertroffen werden. Als ein überraschender und vollkommen unerwarteter Befund wurde nun beobachtet, dass das Y(4260) in das möglicherweise noch mysteriösere Teilchen Zc(3900) zerfällt.

Bei Y(4260) könnte es sich um eine Klasse von subatomaren Teilchen handeln, den sogenannten Psi-Teilchen, die aus einem Charm-Quark und einem Anti-Charm-Quark, also der Antimaterie des Charm-Quarks, zusammengesetzt und durch die starke Kernkraft gebunden sind. In der allgemein akzeptierten Theorie der starken Kernkraft, der sogenannten Quantenchromodynamik (QCD), ließen sich bisher keine präzisen Vorhersagen für die Masse der gebundenen Zustände treffen. Es existieren jedoch QCD-basierte Modelle, die ungefähre Vorhersagen leisten. Die Existenz des Y(4260)-Teilchens ist nun deshalb so interessant, weil seine Masse nicht mit einer der gängigen Vorhersagen für das Spektrum der Psi-Teilchen übereinstimmt.
Eine Erklärung könnte darin liegen, dass es sich bei Y(4260) um eine neue, bisher noch nicht zweifelsfrei bestätigte Form von gebundener Materie handelt, die als Vier-Quark-Zustand bezeichnet wird. Dabei besitzt das Teilchen neben einem Charm- und einem Anti-Charm-Quark noch zwei weitere Quark-Konstituenten. Solch ein Vier-Quark-Zustand ist in der Theorie der Quantenchromodynamik prinzipiell möglich. Die Zahl der Y(4260)-Teilchen sowie die Qualität der Daten war allerdings bisher noch nicht ausreichend, um eine eindeutige Aussage formulieren zu können.

Das BES-III-Experiment hat es sich nun zum Ziel gesetzt, das Y(4260)-Teilchen weiter zu erforschen. Als überaus überraschender Befund wurde dabei der häufige Zerfall in das Zc(3900)-Teilchen entdeckt, das im Gegensatz zu Y(4260) eine elektrische Ladung besitzt. „Dadurch ist eindeutig bewiesen, dass es sich um einen gebundenen Zustand handeln muss, der nicht ausschließlich aus Charm- und Anti-Charm-Quarks besteht. Dies ist bei dem Y(4260)-Teilchen weniger eindeutig, da es elektrisch neutral ist“, erläutert Univ.-Prof. Dr. Achim Denig vom Institut für Kernphysik der Johannes Gutenberg-Universität Mainz und Sprecher des Sonderforschungsbereichs 1044. „In der Tat wäre ein Vier-Quark-Zustand eine mögliche Erklärung für das nun gefundene Teilchen Zc(3900).“

Aufgrund der neuen Erkenntnisse werden die dedizierten Untersuchungen zu den Y(4260)- und Zc(3900)-Teilchen in Peking um zwei weitere Monate verlängert. „Dies wird uns neue Einblicke in diese hochinteressanten Ergebnisse erlauben. Wir werden uns von Mainz aus intensiv daran beteiligen“, so Denig.

Um durch die neuen experimentellen Befunde zu einer tieferen Einsicht in die Eigenschaften der starken Kernkraft zu gelangen, müssen nun präzise theoretische Vorhersagen für die Massen von Zc(3900) und Y(4260) sowie ihrer Verwandten getroffen werden. Im Rahmen der sogenannten Gitter-QCD werden seit einigen Jahren Versuche unternommen, die Massen solcher Teilchen mithilfe groß angelegter Computersimulationen zu berechnen. „Die Spektroskopie der Psi-Teilchen ist für die Gitter-QCD eine große Herausforderung“, erklärt Univ.-Prof. Hartmut Wittig, Sprecher des Mainzer Exzellenzclusters PRISMA. „Dieses hochaktuelle Thema wird im Rahmen des im Juli und August 2013 von der JGU ausgerichteten 31. Internationalen Symposiums über Gitterfeldtheorie sicherlich heiß diskutiert werden.“

Das BES-III-Experiment wird von rund 350 Physikern von 50 Institutionen aus elf Ländern betrieben. Neben China sind auch die USA, Deutschland sowie weitere europäische und asiatische Länder an diesem Projekt der Hadronen- und Teilchenphysik beteiligt.

Die Entdeckung des Zc(3900)-Teilchens wurde zur Veröffentlichung bei Phys. Rev. Lett. eingereicht (http://arxiv.org/abs/1303.5949).

Kontakt:
Univ.-Prof. Dr. Achim Denig
Institut für Kernphysik
Johannes Gutenberg-Universität Mainz
D 55099 Mainz
Tel. 06131 39-25830
E-Mail: denig@kph.uni-mainz.de
http://www.kph.uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.uni-mainz.de/presse/55551.php
http://www.prisma.uni-mainz.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lange Speicherung photonischer Quantenbits für globale Teleportation
13.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften