Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

In der Kälte ausgebremst

10.10.2014

Innsbrucker Ionenphysiker zeigen erstmals Reaktion von negativ geladenem Helium

Warum in die Ferne schweifen: Auch im Labor gibt es elementar Neues aufzuspüren. Das zeigt die jüngste Entdeckung von Innsbrucker Forschern.

Den Ionenphysikern um Prof. Paul Scheier gelang es, negativ geladenes Helium nahe am absoluten Nullpunkt so abzubremsen, dass es mit Fußballmolekülen (Fullerenen) im Inneren von superflüssigen Heliumtröpfchen reagiert. Sie berichten darüber in einem „Enhanced Paper“ in der renommierten Fachzeitschrift Angewandte Chemie International Edition. 

Helium minus wurde bereits 1939 massenspektrometrisch entdeckt. Diese negativ geladenen Atome leben nur wenige Mikrosekunden. 75 Jahre lang ging die Wissenschaft daher davon aus, dass die Anionen dieses Edelgases ein schneller, exotischer Ladungsträger sind und für chemische Prozesse nicht zur Verfügung stehen. Dass das Helium-Anion bei bestimmten Temperatur- und Druckverhältnissen „sehr wohl Chemie macht“, bewies Scheier nun erstmals. 

Ultrakalter Exot im Rampenlicht

Im jüngsten Experiment erzeugte die Innsbrucker Arbeitsgruppe von Scheier im Teamwork mit ihrem britischen Kollegen, Prof. Andrew M. Ellis vom Department of Chemistry der University of Leicester in einer eigens entwickelten Apparatur negativ geladenes Helium bei minus 272,78 Grad Celsius in nanometergroßen Tröpfchen aus superflüssigem Helium, also in Ruhe und ließ es mit Fullerenen - Molekülen aus 60 oder 70 Kohlenstoffatomen (C60, C70) - reagieren. Bei dieser Reaktion nur 0,37 Grad über dem absoluten Nullpunkt von 273,15 Grad Celsius wurden die Fußballmoleküle in den Helium-Nanotröpfchen eingeschlossen. 

Durch den Transfer beider Helium-Elektronen zu den Fullerenen entstanden Dianionen, also zweifach negativ geladenes C60 ((C60)n2-) undC70 ((C70)n2-). „Diesen Zweielektronentransfer kann man sich fast wie ein sogenanntes Cooper-Paar bei der Supraleitung vorstellen“, erklärt Scheier im Ausblick auf eine mögliche Anwendung dieser Grundlagenforschungsergebnisse. Cooper-Paare sind korrelierte Elektronen-Paare, die meist eine anti-parallele Ausrichtung ihres Drehimpulses (Spins) haben und sich widerstandsfrei bewegen können. 

Dem Helium Anion geht in der Physik bisher ein exotischer Ruf voraus. Der Grund: Dieses Atom hat zwei schwach gebundene Elektronen, aber eine innere Energie von über 19 Elektronenvolt. Es verfügt daher über mehr Energie als jedes Radikal und kann damit außer Neon alle Elemente des Periodensystems ionisieren.

Die Bedingungen dafür, dass es neuartige Reaktionen treiben kann, diese neue Vielfalt an Reaktionen auch untersucht werden kann, hat das Team rund um Scheier nun geschaffen. Übergeordnet eröffnen die Innsbrucker Forscher damit ein neues Feld in der Tieftemperaturphysik und -chemie. 

Animation/Bilder:http://www.uibk.ac.at/ionen-angewandte-physik/media/photos/hecomp.avi 

Publikation: Formation of dianions in helium nanodroplets. Andreas Mauracher, Matthias Daxner, Stefan E. Huber, Johannes Postler, Michael Renzler, Stephan Denifl, Paul Scheier and Andrew M. Ellis. Angewandte Chemie International Edition.

DOI: http://dx.doi.org/10.1002/anie.201408172

 

Kontakt: Univ.-Prof. Dr. Paul Scheier

Institut für Ionenphysik und Angewandte Physik

Technikerstrasse 25, A-6020 Innsbruck

Telefon: +43 512 507-52660

Mail: paul.scheier@uibk.ac.at

Web: http://www.uibk.ac.at/ionen-angewandte-physik

 

Mag.a Gabriele Rampl

Public Relations Ionenphysik

Telefon: +43 650 2763351

Mail: office@scinews.at

Web: http://www.scinews.at

Gabriele Rampl | Public Relations Ionenphysik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie