Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hologramme aus dem Nanokosmos

09.02.2010
Jeder kennt aus dem Alltag die Hologramme, die beispielsweise auf Kreditkarten als Sicherheitsmerkmale angebracht sind. Im Unterschied zum Foto eines Objektes, das nur die Amplitude der Lichtwelle, die von einem Objekt ausgeht, aufzeichnet, enthält ein Hologramm zusätzlich die örtliche Information über die Phase der Lichtwelle. Bei geeigneter Beleuchtung des Hologramms wird die ursprüngliche Wellenfront phasenrichtig wiederhergestellt und der Betrachter erhält einen dreidimensionalen Eindruck des Objektes.

Aber nicht diese Eigenschaft der Holografie steht im Mittelpunkt, wenn es um die Abbildung kleinster Strukturen geht, sondern die Tatsache, dass für die Aufzeichnung eines Hologramms keinerlei Linsen benötigt werden.

Für die Untersuchung nanometergroßer Strukturen wird Licht mit mindestens ebenso kleiner Wellenlänge benötigt (weiche Röntgenstrahlung). Die einzigen Linsen die in diesem Wellenlängenbereich funktionieren (sog. Fresnel-Zonenplatten) sind sehr aufwändig herzustellen und liefern trotzdem eine um eine Größenordnung schlechtere Abbildungsqualität als Linsen für sichtbares Licht.

Die Vorgehensweise bei der linsenlosen Aufzeichnung eines Hologramms besteht darin, die Lichtwelle - nachdem sie das Objekt durchstrahlt hat - bei der Aufzeichnung mit einer Referenzwelle bekannter und dazu stabiler (kohärenter) Phase zu überlagern (Interferenz). Als Referenzwelle dient eine Kugelwelle, die von einem wenige Nanometer großen Loch direkt neben dem Objekt ausgeht.

Kohärente Röntgenstrahlen stehen an modernen Synchrotron-Quellen oder an den neuen Freie-Elektronen-Lasern wie dem Hamburger FLASH mit größter Helligkeit zur Verfügung, so dass seit einigen Jahren Verfahren zur holografischen Abbildung von Nanostrukturen erprobt werden.

Eine Arbeitsgruppe des Sonderforschungsbereichs 688 in Zusammenarbeit mit Wissenschaftlern vom DESY in Hamburg und der ESRF in Grenoble hat kürzlich das erste voll funktionsfähige Mikroskop für die Holografie von Nanostrukturen vorgestellt. Dabei erlaubt der neuartige Aufbau aus zwei direkt hintereinander angeordneten und präzise gegeneinander verschiebbaren Siliziumnitrid-Membranen eine beliebige Stelle des zu untersuchenden Objekts gezielt anzufahren und abzubilden, was mit den bisher bekannten Verfahren nicht möglich war.

Der Trick besteht darin, die optisch wirksamen Komponenten - das sind ein Mikrometer großes Loch für die Wahl des Bildausschnitts und das kleine Loch für die Erzeugung der Referenzwelle - aus einer eigenen, undurchlässigen Membran herzustellen. Das Objekt wird dagegen auf einer zweiten, durchlässigen Membran präpariert, die separat gewechselt werden kann.

Die Hologramme der einzelnen Bildausschnitte eines ausgedehnten Objekts werden in einem sehr einfachen Verfahren (FFT) am Computer rekonstruiert und die Bilder anschließend zusammengesetzt. Weiche Röntgenstrahlung bietet die Möglichkeit der selektiven Abbildung einzelner chemischer Elemente oder auch deren lokaler Magnetisierung, was sich je nach Fragestellung gezielt ausnutzen lässt. Die Zeitstruktur der Röntgenpulse verspricht darüber hinaus Information hin zu der Pikosekunden-Skala. Gegenwärtig wird an einer Verbesserung der Ortsauflösung auf 10 nm gearbeitet.

Die Fachzeitschrift "Applied Physics Letters" bewertete die Technik der "Röntgen-Holografischen Mikroskopie" (XHM) als so vielversprechend, dass sie der Veröffentlichung ein eigenes Titelblatt widmete.

D. Stickler, R. Frömter, H. Stillrich, C. Menk, C. Tieg, S. Streit-Nierobisch, M. Sprung, C. Gutt, L.-M. Stadler, O. Leupold, G. Grübel, and H. P. Oepen,

"Soft x-ray holographic microscopy", Appl. Phys. Lett. 96, 042501 (2010), doi:10.1063/1.3291942.

Weitere Informationen:
Dipl.-Chem. Heiko Fuchs
Institut für Angewandte Physik
Universität Hamburg
Jungiusstr. 11a, 20355 Hamburg
Tel.: (0 40) 4 28 38 - 69 59
Fax: (0 40) 4 28 38 - 24 09
E-Mail: hfuchs@physnet.uni-hamburg.de

Heiko Fuchs | idw
Weitere Informationen:
http://www.sfb668.de
http://www.nanoscience.de/lexi

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Freie Elektronen in Sonnen-Protuberanzen untersucht
25.07.2017 | Georg-August-Universität Göttingen

nachricht Magnetische Quantenobjekte im "Nano-Eierkarton": PhysikerInnen bauen künstliche Fallen für Fluxonen
25.07.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie