Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Higgs-Teilchen ist eher ein Leichtgewicht: Fermilab-Experimente geben neue Hinweise

16.03.2009
Experimente am US-Forschungszentrum Fermilab mit Mainzer Beteiligung grenzen den Bereich, in dem das Higgs-Teilchen vermutlich zu finden ist, deutlich ein

Für ihre Suche nach dem mysteriösen Higgs-Teilchen haben die Physiker neue Anhaltspunkte bekommen. Demnach ist das Teilchen eher leichter, jedenfalls nicht ganz so schwer, wie es nach dem bisherigen Kenntnisstand auch hätte sein können.

Bislang war bekannt, dass die Masse des Higgs-Teilchens nicht unter einem Wert von 114 Giga-Elektronenvolt (GeV) liegen kann, das Teilchen also mehr als 114 Mal so schwer sein muss wie ein Proton. Als Obergrenze wurden 185 GeV angenommen. Forscher der Universität Mainz haben nach diesem Higgs-Teilchen mit einem Experiment am Forschungszentrum Fermilab bei Chicago gesucht. Die Ergebnisse lassen nun den Schluss zu, dass die Masse des Higgs-Bosons tatsächlich nicht weit von der 114-GeV-Grenze entfernt liegt.

"Auch wenn wir das Higgs-Teilchen noch nicht wirklich beobachten konnten, so leisten die Experimente einen wichtigen Beitrag, um es festzunageln", sagt Univ.-Prof. Dr. Volker Büscher vom Institut für Physik der Johannes Gutenberg-Universität Mainz. "Damit wissen wir genauer, wo wir künftig suchen müssen", so Univ.-Prof. Dr. Stefan Tapprogge, der als Physiker ebenso wie Büscher an dem Fermilab-Experiment beteiligt ist.

Das Higgs-Teilchen, oder auch Higgs-Boson, ist für die Physiker unerlässlich, um die Masse von Materie zu erklären. Nach dem Standardmodell der Physik setzt sich unsere materielle Welt aus zahlreichen Elementarteilchen zusammen, die mittlerweile auch alle entdeckt wurden. Was allerdings noch fehlt, ist das Higgs-Teilchen, das all den anderen erst ihre Masse verleiht und ohne das kein Elementarteilchen ein Gewicht hätte. Seit über 40 Jahren, als der britische Physiker Peter Higgs den Mechanismus vorgeschlagen hatte, suchen die Teilchenphysiker weltweit nach diesem bisher unauffindbaren Objekt, das unsere sichtbare Welt erst zu dem macht, was sie ist.

Der Tevatron-Beschleuniger am Fermilab, der noch immer leistungsfähigste Teilchenbeschleuniger weltweit, ist zurzeit der einzige Ort, an dem das Higgs-Boson produziert werden kann. Es entsteht bei Kollisionen von Protonen und Antiprotonen, die an den beiden Detektoren CDF und D0 studiert werden. Dabei suchen die Physiker nach Higgs-Bosonen mit beliebiger Masse. Ob und wie sich ein Higgs-Boson im Detektor zeigt, hängt stark von seiner Masse ab. Nun konnte erstmals gezeigt werden, dass die Masse des Higgs-Bosons nicht im Bereich von 160 bis 170 GeV liegen kann. "Higgs-Teilchen mit kleineren Massen sind am Tevatron schwieriger nachzuweisen, aber die Suche in diesen Bereichen geht nun verstärkt weiter", erläutert Tapprogge.

Zusätzlich gab es in den letzten Tagen ein weiteres neues Ergebnis. Die Masse des W-Bosons, eines der Teilchen im Standardmodell und Träger der schwachen Wechselwirkung, wurde am D0-Experiment mit bisher unerreichter Genauigkeit neu vermessen. "Interessanterweise lässt sich aus diesem Wert indirekt darauf schließen, dass die Masse des Higgs-Bosons vergleichsweise klein ist. Beide Ergebnisse zusammen ergeben ein konsistentes Bild von einem leichten Higgs-Boson, dessen Masse nahe der bisherigen Grenze von 114 GeV liegen muss", erklärt Büscher.

Die Suche nach dem Higgs-Boson wird nun weitergehen, aber nicht nur in Chicago. Büscher und Tapprogge sowie zahlreiche weitere Physiker der Universität Mainz arbeiten nicht nur am D0-Experiment am Tevatron, sondern auch am ATLAS-Experiment in Genf mit. Dieses ist der größte der vier Detektoren am neuen Beschleuniger LHC des Teilchenforschungszentrums CERN. Sobald der LHC seinen Betrieb aufnimmt, womit im Herbst gerechnet wird, werden auch die dort versammelten Physiker aus aller Welt mit der Jagd nach dem alles verbindenden, noch fehlenden Glied in der Teilchen-Kette beginnen. "Die Einschränkung des Massenbereichs zeigt sehr deutlich, wo wir am LHC hinschauen müssen", sagt Büscher. "Der LHC ist in der Lage, das Higgs-Boson im gesamten Massenbereich zu finden." Der Mainzer Teilchenphysiker schließt nicht aus, dass sich am Tevatron in den nächsten Jahren erste Hinweise auf ein Higgs-Boson mit niedriger Masse finden lassen. "Aber der wirkliche Nachweis und die weitergehenden Untersuchungen werden erst am LHC möglich sein."

Kontakt und Informationen:
Univ.-Prof. Dr. rer. nat. Volker Büscher
Experimentelle Teilchen- und Astroteilchenphysik
Institut für Physik
Johannes Gutenberg-Universität Mainz
Tel. 06131 39-20399
Fax 06131 39-25169
E-Mail: buescher@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.physik.uni-mainz.de/etap/
http://www.fnal.gov/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Nano-Uhr mit präzisen Zeigern
21.11.2017 | Universität Wien

nachricht ESO-Beobachtungen zeigen, dass der erste interstellare Asteroid mit nichts vergleichbar ist, was wir bisher kennen
21.11.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

Raumfahrtkolloquium: Technologien für die Raumfahrt von morgen

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Antarktisches Meereis: mehr Schutz als Vorratskammer für Krilllarven

22.11.2017 | Ökologie Umwelt- Naturschutz

Europäisches Konsortium baut effizientestes Rechenzentrum der Welt

22.11.2017 | Informationstechnologie

CAU-Wissenschaftlerin erhält EU-Förderung zur Entwicklung neuer Implantate

22.11.2017 | Förderungen Preise