Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Heißes Wasser in kalten Kometen

08.09.2010
Wasser entsteht in Kometen auf einem ungewöhnlichen Weg

Im Wasser liegt der Ursprung des irdischen Lebens. Deswegen sind Astronomen im Universum auf der Suche nach diesem Molekül. Sie entdeckten es auf dem Mars, in interstellaren Wolken und den Gasscheiben junger Sterne, in denen sich Planeten bilden. Wasser ist auch ein Hauptbestandteil von Kometen, weswegen es die Vermutung gibt, dass diese in der Frühzeit des Sonnensystems zumindest einen Teil des Lebenselixiers auf die Erde brachten.

Einer internationalen Forschergruppe um Andreas Wolf vom Max-Planck-Institut für Kernphysik in Heidelberg gelang es jetzt, die Entstehung von Wassermolekülen im Detail zu entschlüsseln. Überraschend stellten sie dabei fest, dass die Wassermoleküle in den ultrakalten Kometen als 60 000 Grad heiße Teilchen entstehen. Für ihre Forschung verwendeten die Physiker indes kein Teleskop, sondern einen Teilchenbeschleuniger (Physical Review Letters, 3. September 2010).

In den Kometen und interstellaren Wolken ist der Ausgangsstoff des Wassers das positiv geladene Hydronium-Ion H3 O+ . Dieses Teilchen lässt sich von der Erde aus mit Teleskopen nachweisen. In den kosmischen Wolken fliegen normalerweise auch negativ geladene Elektronen umher, so dass es häufig zu Zusammenstößen kommt. Damit wird das Hydronium-Ion zwar zu dem neutralen Molekül H3O, aber es ist noch kein Wasser. Die Natur hat jedoch dafür gesorgt, dass H3O instabil ist und sofort zerfällt. "Hierfür stellt sie drei Möglichkeiten zur Wahl", erklärt Andreas Wolf: "Entweder entsteht H2O plus H, OH plus H2 oder OH plus zwei H-Atome." Ein Ziel der aktuellen Forschung ist es herauszufinden, mit welcher Häufigkeit die drei Zerfallsarten auftreten und Wasser entsteht.

Wolf und Kollegen gehen dieser Frage nach, indem sie die Elektronenanlagerung im Labor nachstellen. Hierfür verwenden sie den Heidelberger Testspeicherring, eine Art Rennbahn mit 55 Metern Umfang, auf der geladene Teilchen von Magneten geführt herumrasen.

In diesen Ring speisen die Forscher Hydronium-Ionen ein, genauer D3O+, also Hydronium-Ionen aus Deuterium, schweren Wasserstoffatomen. Den schweren Wasserstoff verwenden sie aus experimentellen Gründen, die Interpretation ihrer Versuche beeinträchtigt das aber nicht. An einer Stelle im Ring strömen zudem von außen Elektronen hinein, die die Ionen auf einem knapp zwei Meter langen Teilstück begleiten und dann den Ring wieder verlassen. Das geschieht bei jedem Umlauf, also mehrere hunderttausend Mal pro Sekunde.

In einem von sechs Fällen entsteht beim Zerfall Wasser

In dem Elektronenbad lagern sich nun - fast so wie im Weltraum - Elektronen mit Hydronium-Ionen zu Molekülen zusammen, die sofort zerfallen. Die Bruchstücke sind aber elektrisch neutral. Sie reagieren deswegen nicht auf das Magnetfeld und fliegen aus dem Speicherring heraus. An dieser Stelle hat Wolfs Gruppe einen Detektor installiert, der die auftreffenden Teilchen registriert. Dieses empfindliche Gerät entstand in Zusammenarbeit mit Kollegen des israelischen Weizmann-Instituts in Rehovot.

Mit bis zu tausend "Bildern" pro Sekunde registriert der Detektor Molekülmassen und Impulse aller Zerfallsprodukte. Aus diesen Daten lassen sich die Vorgänge beim Anlagern der Elektronen und anschließenden Auseinanderbrechen des Moleküls exakt rekonstruieren.

Das erste wichtige Ergebnis: Bei der Elektronen-Anlagerung zerfällt das Hydronium zu 16,5 Prozent - also in einem von sechs Fällen - zu Wasser. "Das ist ein recht hoher Wert", sagt Wolf. "Wahrscheinlich ist die Elektronenanlagerung an Hydronium-Ionen der wichtigste Wasserproduktionsweg in interstellaren Wolken und Kometen."

Die Moleküle schwingen mit maximaler Energie

Am häufigsten, nämlich zu 71 Prozent, zersplittert das Hydronium-Ion jedoch in die drei Bestandteile OH plus zwei H-Atome. Warum das so ist, können die Forscher jetzt erklären. Wenn sich das Elektron an dem Ion anlagert, wird dabei Bindungsenergie frei. Diese nimmt das gesamte Molekül auf und fängt an zu schwingen, ähnlich wie eine Spiralfeder, die man spannt und loslässt. "Wir haben zur Überraschung aller herausgefunden, dass die Moleküle mit der maximal möglichen Energie schwingen", sagt Wolf. Damit ist jedes Molekül bei der Elektronenanlagerung kurz vor dem Zerreißen und zerbricht eben eher in drei als in zwei Teile.

Die hohe Schwingungsenergie lässt sich auch in eine Temperatur umrechnen. Dabei kommen die Physiker auf 60 000 Grad Celsius: Wasser kommt also heiß in die Welt.

Die neuen Erkenntnisse haben noch weitere Auswirkungen. Zum einen gehen sie als Parameter in Computermodelle ein, mit denen das komplexe Reaktionsnetz in interstellaren Wolken berechnet wird. Zum anderen erklären sie rätselhafte Merkmale, die Astronomen in Infrarotspektren einiger Kometen beobachtet hatten: Die neu geborenen Wassermoleküle hören schrittweise auf zu schwingen, und bei jeder weiteren "Abregungsstufe" senden sie Infrarotstrahlung aus. Und nicht zuletzt geben die neuen Messergebnisse ungeahnt detaillierte Aufschlüsse über die elektronischen Vorgänge in einem Hydronium-Ion und dienen so als Input für quantenmechanische Modelle dieser Moleküle.

Originalveröffentlichung:

H. Buhr, J. Stützel, M. B. Mendes, O. Novotný, D. Schwalm, M. H. Berg, D. Bing, M. Grieser, O. Heber, C. Krantz, S. Menk, S. Novotny, D. A. Orlov, A. Petrignani, M. L. Rappaport, R. Repnow, D. Zajfman, und A. Wolf
Hot water molecules from dissociative recombination of D3O+ with cold electrons
Physical Review Letters, 3. September 2010
Weitere Informationen erhalten Sie von:
Dr. Andreas Wolf
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: +49 6221 516-503
E-Mail: A.Wolf@mpi-hd.mpg.de
Dr. Henrik Buhr
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: +49 531 5926-208
E-Mail: henrik.buhr@mpi-hd.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Maschinelles Lernen im Quantenlabor
19.01.2018 | Universität Innsbruck

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie