Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Heißes Wasser in kalten Kometen

08.09.2010
Wasser entsteht in Kometen auf einem ungewöhnlichen Weg

Im Wasser liegt der Ursprung des irdischen Lebens. Deswegen sind Astronomen im Universum auf der Suche nach diesem Molekül. Sie entdeckten es auf dem Mars, in interstellaren Wolken und den Gasscheiben junger Sterne, in denen sich Planeten bilden. Wasser ist auch ein Hauptbestandteil von Kometen, weswegen es die Vermutung gibt, dass diese in der Frühzeit des Sonnensystems zumindest einen Teil des Lebenselixiers auf die Erde brachten.

Einer internationalen Forschergruppe um Andreas Wolf vom Max-Planck-Institut für Kernphysik in Heidelberg gelang es jetzt, die Entstehung von Wassermolekülen im Detail zu entschlüsseln. Überraschend stellten sie dabei fest, dass die Wassermoleküle in den ultrakalten Kometen als 60 000 Grad heiße Teilchen entstehen. Für ihre Forschung verwendeten die Physiker indes kein Teleskop, sondern einen Teilchenbeschleuniger (Physical Review Letters, 3. September 2010).

In den Kometen und interstellaren Wolken ist der Ausgangsstoff des Wassers das positiv geladene Hydronium-Ion H3 O+ . Dieses Teilchen lässt sich von der Erde aus mit Teleskopen nachweisen. In den kosmischen Wolken fliegen normalerweise auch negativ geladene Elektronen umher, so dass es häufig zu Zusammenstößen kommt. Damit wird das Hydronium-Ion zwar zu dem neutralen Molekül H3O, aber es ist noch kein Wasser. Die Natur hat jedoch dafür gesorgt, dass H3O instabil ist und sofort zerfällt. "Hierfür stellt sie drei Möglichkeiten zur Wahl", erklärt Andreas Wolf: "Entweder entsteht H2O plus H, OH plus H2 oder OH plus zwei H-Atome." Ein Ziel der aktuellen Forschung ist es herauszufinden, mit welcher Häufigkeit die drei Zerfallsarten auftreten und Wasser entsteht.

Wolf und Kollegen gehen dieser Frage nach, indem sie die Elektronenanlagerung im Labor nachstellen. Hierfür verwenden sie den Heidelberger Testspeicherring, eine Art Rennbahn mit 55 Metern Umfang, auf der geladene Teilchen von Magneten geführt herumrasen.

In diesen Ring speisen die Forscher Hydronium-Ionen ein, genauer D3O+, also Hydronium-Ionen aus Deuterium, schweren Wasserstoffatomen. Den schweren Wasserstoff verwenden sie aus experimentellen Gründen, die Interpretation ihrer Versuche beeinträchtigt das aber nicht. An einer Stelle im Ring strömen zudem von außen Elektronen hinein, die die Ionen auf einem knapp zwei Meter langen Teilstück begleiten und dann den Ring wieder verlassen. Das geschieht bei jedem Umlauf, also mehrere hunderttausend Mal pro Sekunde.

In einem von sechs Fällen entsteht beim Zerfall Wasser

In dem Elektronenbad lagern sich nun - fast so wie im Weltraum - Elektronen mit Hydronium-Ionen zu Molekülen zusammen, die sofort zerfallen. Die Bruchstücke sind aber elektrisch neutral. Sie reagieren deswegen nicht auf das Magnetfeld und fliegen aus dem Speicherring heraus. An dieser Stelle hat Wolfs Gruppe einen Detektor installiert, der die auftreffenden Teilchen registriert. Dieses empfindliche Gerät entstand in Zusammenarbeit mit Kollegen des israelischen Weizmann-Instituts in Rehovot.

Mit bis zu tausend "Bildern" pro Sekunde registriert der Detektor Molekülmassen und Impulse aller Zerfallsprodukte. Aus diesen Daten lassen sich die Vorgänge beim Anlagern der Elektronen und anschließenden Auseinanderbrechen des Moleküls exakt rekonstruieren.

Das erste wichtige Ergebnis: Bei der Elektronen-Anlagerung zerfällt das Hydronium zu 16,5 Prozent - also in einem von sechs Fällen - zu Wasser. "Das ist ein recht hoher Wert", sagt Wolf. "Wahrscheinlich ist die Elektronenanlagerung an Hydronium-Ionen der wichtigste Wasserproduktionsweg in interstellaren Wolken und Kometen."

Die Moleküle schwingen mit maximaler Energie

Am häufigsten, nämlich zu 71 Prozent, zersplittert das Hydronium-Ion jedoch in die drei Bestandteile OH plus zwei H-Atome. Warum das so ist, können die Forscher jetzt erklären. Wenn sich das Elektron an dem Ion anlagert, wird dabei Bindungsenergie frei. Diese nimmt das gesamte Molekül auf und fängt an zu schwingen, ähnlich wie eine Spiralfeder, die man spannt und loslässt. "Wir haben zur Überraschung aller herausgefunden, dass die Moleküle mit der maximal möglichen Energie schwingen", sagt Wolf. Damit ist jedes Molekül bei der Elektronenanlagerung kurz vor dem Zerreißen und zerbricht eben eher in drei als in zwei Teile.

Die hohe Schwingungsenergie lässt sich auch in eine Temperatur umrechnen. Dabei kommen die Physiker auf 60 000 Grad Celsius: Wasser kommt also heiß in die Welt.

Die neuen Erkenntnisse haben noch weitere Auswirkungen. Zum einen gehen sie als Parameter in Computermodelle ein, mit denen das komplexe Reaktionsnetz in interstellaren Wolken berechnet wird. Zum anderen erklären sie rätselhafte Merkmale, die Astronomen in Infrarotspektren einiger Kometen beobachtet hatten: Die neu geborenen Wassermoleküle hören schrittweise auf zu schwingen, und bei jeder weiteren "Abregungsstufe" senden sie Infrarotstrahlung aus. Und nicht zuletzt geben die neuen Messergebnisse ungeahnt detaillierte Aufschlüsse über die elektronischen Vorgänge in einem Hydronium-Ion und dienen so als Input für quantenmechanische Modelle dieser Moleküle.

Originalveröffentlichung:

H. Buhr, J. Stützel, M. B. Mendes, O. Novotný, D. Schwalm, M. H. Berg, D. Bing, M. Grieser, O. Heber, C. Krantz, S. Menk, S. Novotny, D. A. Orlov, A. Petrignani, M. L. Rappaport, R. Repnow, D. Zajfman, und A. Wolf
Hot water molecules from dissociative recombination of D3O+ with cold electrons
Physical Review Letters, 3. September 2010
Weitere Informationen erhalten Sie von:
Dr. Andreas Wolf
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: +49 6221 516-503
E-Mail: A.Wolf@mpi-hd.mpg.de
Dr. Henrik Buhr
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: +49 531 5926-208
E-Mail: henrik.buhr@mpi-hd.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie