Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Heißes Molekül erklärt kalte Chemie im freien Raum

23.01.2012
In kalten interstellaren Gaswolken kommen Blausäure, HCN, und die wesentlich energiereichere Isoblausäure, HNC, überraschenderweise in nahezu gleichen Mengen vor.

Wie es dazu kommt, haben Wissenschaftler des Max-Planck-Instituts für Kernphysik mit Experimenten im Heidelberger Ionenspeicherring aufgeklärt. Bei der interstellaren Synthese entsteht zunächst eine heiße Mischform, aus der beide Isomere gleich häufig hervorgehen. (The Astrophysical Journal Letters, 20.01.2011 online)


Bild 1: Der von der Heidelberger Forschergruppe zusammen mit Kollegen vom Weizmann Institute of Science in Rehovot neu entwickelte Detektor, der sowohl Orte als auch Teilchenmassen für die Fragmente molekularer Aufbruchreaktionen bestimmt, kurz vor seinem Einbau in das Vakuumsystem des Heidelberger Ionenspeicherrings. Die Pfeile zeigen schematisch die Flugbahnen der auftreffenden Fragmente. Das Diagramm rechts veranschaulicht die Bestimmung der Teilchenmassen und Auftrefforte auf der Detektoroberfläche, die aus gekreuzt angeordneten Siliziumstreifen besteht. Die Teilchenmasse ist durch die Pulshöhe gegeben. Foto und Illustration: MPIK


Bild 2: Auf den neuen Labordaten beruhendes Schema für die Produktion beider Isomere des Blausäure-Moleküls in interstellaren Wolken. Beim Einfang langsamer Elektronen wird von HCNH+ ein H-Atom abgespalten und es verbleibt HCN oder HNC. Das Experiment zeigt, dass die Schwingungsanregung in diesem Produkt extrem hoch ist. Keine der isomeren Anordnungen ist unter diesen Umständen stabil; vielmehr wechselt das H-Atom sein Platz auf der Zeitskala der Molekülschwingungen (sub-Pikosekunden). Erst nach viel längerer Zeit (auf der Millisekunden-Zeitskala) erreicht die innere Energie des Moleküls die Höhe der Barriere, die beide Isomere voneinander trennt. Dabei entstehen beide Isomere mit annähernd gleicher Wahrscheinlichkeit. Grafik: MPIK, aus der Originalveröffentlichung modifiziert.

Wenn sich aus kalten Gaswolken Sterne bilden, finden sich in den Wolken bereits viele Moleküle, die aus den wichtigen Grundelementen (Wasserstoff, Kohlenstoff, Stickstoff, Sauerstoff bis hin zu Schwefel) aufgebaut sind. Mit empfindlichen neuen Observatorien lassen sich die "Fingerabdrücke" vieler dieser Moleküle im Licht und in der Radiostrahlung dieser Gaswolken identifizieren.

Rätselhafterweise zeigt sich dabei, dass die Atome in den interstellaren Molekülen nicht immer in der energetisch günstigsten Anordnung vorliegen. Manche der beobachteten Verbindungen werden in verwandten Formen (sogenannte Isomeren) gefunden, die durch Platzwechsel einzelner Atome innerhalb des Moleküls entstehen können. Für solche Platzwechsel muss jedoch eine erhebliche Energie aufgewendet werden, die Temperaturen von vielen tausend Grad erfordert.

Eines dieser Moleküle ist Blausäure (HCN – das Wasserstoffatom ist an das Kohlenstoffatom gebunden), deren wesentlich energiereicheres Isomer Isoblausäure (HNC – das Wasserstoffatom ist an das Stickstoffatom gebunden) etwa genauso häufig gefunden wird wie Blausäure, die bei den tiefen Temperaturen im freien Raum eigentlich weit überwiegen sollte.

Schon lange wurde vermutet, dass die Bildung dieser oft sehr energetischen Isomere auf die allgemeine Art der Molekülbildung in interstellaren Wolken zurückzuführen sei. Sie erfolgt letztlich durch die ionisierende Strahlung, die das Weltall durchdringt. Hierbei bildet sich auf einem verschlungenen Weg zuerst ein symmetrischer Vorläufer, das Ion HCNH+. Trifft ein HCNH+-Ion mit einem Elektron zusammen, wird es neutralisiert und zerfällt in Bruchstücke, wobei Energie frei wird. Auf diesem Weg ist die Bildung beider Isomere möglich.

Forscher am MPI für Kernphysik haben nun diese elementare Aufbruchreaktion im Labor genau vermessen – unter Bedingungen, die denen in interstellaren Wolken sehr nahe kommen. Im Heidelberger Ionenspeicherring brachten sie Elektronen und DCND+-Ionen (Varianten des HCNH+ mit schwerem Wasserstoff, D = Deuterium) einzeln zum Stoß, und zwar bei extrem geringen Stoßenergien, die der Temperatur von ca. –260°C in den interstellaren Wolken entsprechen. Mit einem kürzlich in der Forschergruppe neu entwickelten großflächigen Detektor bestimmten sie die Orte und die Teilchenmassen der Fragmente D und DCN bzw. DNC. Nur so kann sichergestellt werden, dass im Experiment immer nur genau der Aufbruch in zwei Teilchen registriert wird. Eine Unterscheidung zwischen den beiden Isomeren des Produktmoleküls ist bei diesem Teilchenphysik-Experiment zwar nicht möglich; dafür aber kann damit die Bewegungsenergie der Bruchstücke genau bestimmt werden.

Hierbei beobachteten die Forscher, dass die freigesetzte Bewegungsenergie viel geringer war als erwartet. Die fehlende Energie kann nur im Produktmolekül stecken und ist extrem hoch – das Molekül ist also „heiß“, wie auch von einigen Theoretikern vorhergesagt. Dies bedeutet jedoch, dass in dem heftig schwingenden Produkt der kalten Reaktion immer noch häufige Platzwechsel von Atomen möglich sind. Das in interstellaren Gaswolken gebildete Molekül kann daher beide geometrischen Formen annehmen, während es seine hohe innere Energie allmählich, ähnlich wie eine langsam erlöschende Glühbirne, in die Umgebung abstrahlt. Sehr häufig, in etwa der Hälfte aller Fälle, entsteht dabei das energiereiche Isomer. Sein Auftreten in den kalten interstellaren Molekülwolken spiegelt also – wie jetzt im Labor belegt – seinen dortigen Entstehungsprozess durch einen weiten Umweg über ionisierende Strahlung wider.

Originalveröffentlichung:
“Cold electron reactions producing the energetic isomer of hydrogen cyanide in interstellar clouds”, Mario B. Mendes et al., The Astrophysical Journal Letters, 746, L8 (doi:10.1088/2041-8205/746/1/L8), http://stacks.iop.org/2041-8205/746/L8

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/800582/W002_Physik-Astronomie_044-051.pdf
http://www.mpi-hd.mpg.de/blaum/molecular-qd/index.de.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie