Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Halbgefrorene Spinflüssigkeit

11.06.2018

Physiker der Universität Augsburg und des Paul Scherrer Instituts entdecken Koexistenz flüssiger und gefrorener Spins in magnetischen Verbindung unter hohem Druck.

Die elementaren Bausteine magnetischer Materialien, sogenannte Spins, können unterschiedliche Zustände annehmen, die in Analogie zu Aggregatszuständen oft als fest (kristallin) oder gasförmig (ungeordnet) bezeichnet werden.


Analog zur Koexistenz von Eis und Wasser in der Arktis treten in β-Li2IrO3 unter hohem Druck Bereiche gefrorener und flüssiger Spins auf, d. h. bewegliche und feste magnetische Momente.

Foto: Kathryn Hansen / NASA photo / Alaska Dispatch

Zwischenzustände von Spins, die den Zwischenzuständen einer Flüssigkeit entsprechen würden, wären von besonderem Interesse, sind bislang jedoch kaum nachgewiesen. Forscher des Augsburger Lehrstuhls für Experimentalphysik VI/EKM berichten in "Physical Review Letters" vom erstmaligen experimentellen Nachweis eines gemischt flüssigen und gefrorenen Spinszustands, den sie unter hohem Druck in der Verbindung β-Li₂IrO3 realisieren konnten.

Durch Angabe des Aggregatszustands lassen sich Stoffe ganz allgemein als gasförmig, flüssig oder fest einordnen. Analoge Bezeichnungen werden auch verwandt, um das Verhalten der Elementarmagnete in Festkörpern, der so genannten „Spins“ zu beschreiben.

Bei hohen Temperaturen ändern die Spins ständig ihre Ausrichtung und befinden sich in einem völlig ungeordneten, gasförmigen Zustand. Analog zum Kondensieren und anschließenden Erstarren bei Abkühlung von Gasen, können auch Spins bei tiefen Temperaturen in einen geordneten Zustand mit fester Ausrichtung einfrieren.

Falls jedoch unterschiedliche Wechselwirkungen zwischen den Spins nicht gleichzeitig in einer festen Spinausrichtung befriedigt werden können – man spricht hier von „magnetischer Frustration“ – ist theoretisch vorhergesagt, dass sich eine bis hinab zu tiefsten Temperaturen stabile Spin-Flüssigkeit ausbildet. Dies ist ein Zustand, in dem die Spins zwar miteinander wechselwirken, aber keine feste Ordnung annehmen.

Wege zur Spinflüssigkeit

Spinflüssigkeiten sind sehr selten und schwierig zu erzeugen. Theoretisch wurden verschiedene Wege vorgeschlagen, bislang gibt es jedoch kaum praktische Umsetzungen. Im Jahr 2006 wurde vom mathematischen Physiker Alexei Kitaev ein vielbeachtetes Modell erdacht, welches eine neue Klasse von Spinflüssigkeiten mit interessanten Eigenschaften – auch im Hinblick auf neuartige Anwendungen in der Quanteninformationstechnologie – bietet.

Zahlreiche experimentelle Gruppen versuchen seither eine „Kitaev-Spinflüssigkeit“ zu realisieren. Zwar gibt es mittlerweile eine Reihe von Verbindungen, welche die von Kitaev postulierte bindungsrichtungsabhängige magnetische Wechselwirkung aufweisen, der Kitaev-Spinflüssigkeitszustand konnte jedoch nicht zweifelsfrei nachgewiesen werden. Dies liegt daran, dass in der Realität zusätzliche, im Modell nicht enthaltene Wechselwirkungen einen festen Spinzustand favorisieren.

Experimente unter Druck

Das Augsburger Team hat nun durch Anlegen von Druck einen wichtigen Durchbruch erzielt. „Druck kann die Atompositionen im Kristall und damit deren gegenseitige Wechselwirkungen gezielt ändern. Magnetische Wechselwirkungen sind besonders druckempfindlich, daher sind Druckexperimente an Kitaev-Materialien besonders spannend“, so Dr. Alexander Tsirlin, Nachwuchsgruppenleiter am Zentrum für Elektronische Korrelationen und Magnetismus des Augsburger Physik-Instituts.

Für die Druckexperimente wurde die Verbindung β-Li₂IrO3 ausgewählt, die in Augsburg in Form hochreiner Einkristalle hergestellt werden kann. Frühere Untersuchungen zeigten bereits das Vorhandensein der Kitaev-Wechselwirkung in diesem Material. Allerdings tritt bei Normaldruck keine Spinflüssigkeit, sondern eine komplizierte magnetische Ordnung auf. Das Team unter Leitung von Dr. Tsirlin und Prof. Dr. Philipp Gegenwart führte nun Druckexperimente bis zum 20.000-fachen des Atmosphärendrucks durch, was einer enormen Last von 20 Tonnen pro Quadratzentimeter entspricht.

Unterschiedliche Experimente wurden durchgeführt. Eine sehr kompakte Druckzelle mit weniger als 8 mm Außendurchmesser wurde für hochempfindliche Messungen der Magnetisierung bis zu sehr tiefen Temperaturen in Augsburg verwandt. Weitere Experimente wurden am Paul Scherrer Institut in der Schweiz durchgeführt. Bei diesen Experimenten wurde das Probenmaterial innerhalb einer Druckzelle mit Myonen, also positiv geladenen Elementarteilchen, welche ein Spinmoment tragen, bombardiert.

Die Polarisation des Myonenspins ist eine sehr empfindliche Sonde lokaler Magnetfelder im Probenmaterial. Die Experimente mit Myonen am Paul Scherrer Institut bestätigten die bereits in Augsburg beobachtete Unterdrückung der magnetischen Ordnung in β-Li₂IrO3 unter hohem Druck, die auf die Bildung einer Spinflüssigkeit hindeuten könnte. Die detaillierte Auswertung ergab jedoch zur Überraschung des Forscherteams, dass eine Koexistenz, vermutlich auf Nanometer-Skala, von flüssigen und gefrorenen Bereichen vorliegt.

Vereisung oder schwimmende Eisberge aus Spins?

Das Ausfrieren einer Spinflüssigkeit kann durch Unvollkommenheiten im Material, also durch Gitterdefekte verursacht werden. Die Arbeitsgruppe hat daher auch äußerst akkurat die Kristallstruktur vor, während und nach den Druckexperimenten untersucht. Dies ergab jedoch keine Hinweise auf Kristall-Defektbildung.

„Die Koexistenz flüssiger und gefrorener Spinbereiche scheint deshalb eine allgemeine Eigenschaft von β-Li₂IrO3 unter hohem Druck zu sein“, fasst Gegenwart die Experimente zusammen. Unverstanden sei bislang, ob die ausgefrorenen Spins sich in Klumpen – analog zu Eisbergen im Ozean – formieren, oder ob sie flüssige Bereiche umringen, analog zur dünnen Eisfläche eines gefrierenden Sees. „In jedem Fall ist die unter Druck beobachtete Phase unterschiedlich zur vorhergesagten Kitaev-Spinflüssigkeit. Daher muss die bestehende Theorie erweitert werden“, so Tsirlin.


Publikation:
M. Majumder, R.S. Manna, G. Simutis, J.C. Orain, T. Dey, F. Freund, A. Jesche, R. Khasanov, P.K. Biswas, E. Bykova, N. Dubrovinskaia, L.S. Dubrovinsky, R. Yadav, L. Hozoi, S. Nishimoto, A.A. Tsirlin, and P. Gegenwart, Breakdown of magnetic order in the pressurized Kitaev iridate β-Li₂IrO3, Phys. Rev. Lett. 120, 237202 (2018); http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.237202

Ansprechpartner:
Prof. Dr. Philipp Gegenwart und Dr. Alexander Tsirlin
Lehrstuhl für Experimentalphysik VI/EKM
Institut für Physik / Zentrum für Elektronische Korrelationen und Magnetismus
Universität Augsburg
86135 Augsburg
Telefon +49(0)821/598‐3651
philipp.gegewart@physik.uni‐augsburg.de, alexander.tsirlin@physik.uni-augsburg.de

Weitere Informationen:

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.237202

Klaus P. Prem | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Rätselhaftes IceCube-Ereignis könnte von Tau-Neutrino stammen
19.06.2018 | Johannes Gutenberg-Universität Mainz

nachricht Ein neues Experiment zum Verständnis der Dunklen Materie
14.06.2018 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 in Shanghai

Die AchemAsia geht in ihr viertes Jahrzehnt und bricht auf zu neuen Ufern: Das International Expo and Innovation Forum for Sustainable Chemical Production findet vom 21. bis 23. Mai 2019 in Shanghai, China statt. Gleichzeitig erhält die Veranstaltung ein aktuelles Profil: Die elfte Ausgabe fokussiert auf Themen, die für Chinas Prozessindustrie besonders relevant sind, und legt den Schwerpunkt auf Nachhaltigkeit und Innovation.

1989 wurde die AchemAsia als Spin-Off der ACHEMA ins Leben gerufen, um die Bedürfnisse der sich damals noch entwickelnden Iindustrie in China zu erfüllen. Seit...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

Simulierter Eingriff am virtuellen Herzen

18.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Radar verschafft Durchblick in der Robotik

20.06.2018 | Energie und Elektrotechnik

Revolution der Rohre

20.06.2018 | Energie und Elektrotechnik

Heiratsschwindel unter Oxiden

20.06.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics