Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Graphen: Wozu Buckel und Höcker gut sein können

19.04.2010
Gemeinsame Presseinformation der Leibniz Universität Hannover und der Physikalisch-Technischen Bundesanstalt

Forscher aus Hannover und Braunschweig messen, wie sich elektronische Eigenschaften von Graphen mit Hilfe von gezielt eingesetzten Rauigkeiten steuern lassen

Graphen ist zurzeit wohl das weltweit am meisten untersuchte neue Materialsystem. Wegen seiner erstaunlichen mechanischen, chemischen und elektronischen Eigenschaften verspricht es vielfältige zukünftige Anwendungen - etwa in der Mikroelektronik. Die Elektronen im Graphen sind besonders beweglich und könnten deshalb das heute verwendete Silicium als Ausgangsmaterial schneller Computerchips ersetzen.

In einer Forschungskooperation haben Wissenschaftler der Leibniz Universität Hannover und der Physikalisch-Technischen Bundesanstalt (PTB) jetzt untersucht, wie sich eine raue Unterlage auf die elektronischen Eigenschaften der Graphenschicht auswirkt. Ihre Ergebnisse lassen vermuten, dass man Plasmonen, also kollektive Schwingungen von Elektronen, im Graphen bald gezielt steuern kann, indem man ihnen aus Buckeln und Höckern quasi eine Fahrspur baut. Die Ergebnisse wurden in der aktuellen Ausgabe der Fachzeitschrift New Journal of Physics veröffentlicht.

Bereits die Struktur von Graphen ist faszinierend: Es besteht aus genau einer einzigen, geordneten Schicht von Kohlenstoffatomen. Diese unglaublich dünne Schicht sauber herzustellen ist eine große Herausforderung. Eine mögliche Methode, um großflächig Graphen auf einem isolierenden Substrat abzuscheiden, ist die Epitaxie, also das kontrollierte Wachstum von Graphen auf isolierendem Siliciumcarbid. Dafür wird ein Siliciumcarbidkristall im Vakuum erhitzt. Ab einer bestimmten Temperatur wandern Kohlenstoffatome an die Oberfläche und bilden eine einatomare Schicht auf dem noch festen Siliciumcarbid. Eine wichtige Frage für spätere Anwendungen ist dabei, wie sich Defekte und Stufen der Siliciumcarbidoberfläche auf die elektronischen Eigenschaften des darauf gewachsenen Graphens auswirken.

Innerhalb einer Forschungskooperation der PTB und der Leibniz Universität Hannover wurde nun der Einfluss von Defekten im Graphen auf die elektronischen Eigenschaften untersucht. Besonderes Augenmerk der Untersuchungen lag dabei auf dem Einfluss der Defekte auf eine spezielle elektronische Anregung, die sogenannten Plasmonen.

Durch unterschiedliche Probenpräparation wurden zunächst Siliciumcarbidkristalle mit unterschiedlicher Oberflächenrauigkeit und damit unterschiedlicher Konzentration von Oberflächendefekten präpariert, auf denen sich anschließend Graphen gebildet hat. Der Einfluss der Defekte auf die Plasmonenanregungen wurde dann mittels niederenergetischer Elektronenbeugung (SPA-LEED) und Elektronenverlustspektroskopie (EELS) untersucht.

Dabei zeigte sich eine starke Abhängigkeit der Lebensdauer des Plasmons von der Oberflächenbeschaffenheit. Defekte, wie sie an Stufenkanten und Korngrenzen entstehen, hemmen die Ausbreitung der Plasmonen stark und führen zu einer drastischen Verkürzung der Plasmonen-Lebensdauer. Dabei ist bemerkenswert, dass die sonstigen elektronischen Eigenschaften der Plasmonen, insbesondere ihre Dispersion, weitgehend unbeeinflusst bleiben.

Dies eröffnet interessante Möglichkeiten für die zukünftige technische Anwendung und Nutzung von Plasmonen (die sogenannte "Plasmonik") in Graphen. Durch gezieltes lokales Einstellen der Oberflächenrauigkeit könnten verschiedene Graphenbereiche erzeugt werden, in denen die Plasmonen entweder stark gedämpft werden oder sich praktisch ungehindert ausbreiten können. Damit könnten die Plasmonen entlang von "Plasmonenleiterbahnen" mit niedriger Oberflächenrauigkeit gezielt von einer Stelle eines Graphen-Chips zu einer anderen geleitet werden.

Die Originalveröffentlichung:
T. Langer, J. Baringhaus, H. Pfnür, H. W. Schumacher und C. Tegenkamp:
"Plasmon damping below the Landau regime: the role of defects in epitaxial graphene".
New Journal of Physics 12, 033017 (2010).
http://iopscience.iop.org/1367-2630/12/3/033017/
Ansprechpartner der PTB
Dr. Hans Werner Schumacher, PTB-Fachbereich 2.5 Halbleiter-Physik und Magnetismus,

Telefon: 0531.592 2500, E-Mail: hans.w.schumacher@ptb.de

Ansprechpartner der Leibniz Universität Hannover
Dr. Christoph Tegenkamp, Institut für Festkörperphysik,
Telefon: 0511.762 2542, E-Mail: tegenkamp@fkp.uni-hannover.de

Jessica Lumme | idw
Weitere Informationen:
http://www.uni-hannover.de
http://iopscience.iop.org/1367-2630/12/3/033017/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise