Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Gigant in Aufruhr

30.07.2009
Beobachtungen des Sterns Beteigeuze zeigen erstmals heftige Gasbewegungen auf seiner Oberfläche

Einem internationalen Team von Astronomen unter der Leitung von Keiichi Ohnaka vom Max-Planck-Institut für Radioastronomie in Bonn ist die bisher schärfste Darstellung eines sterbenden Riesensterns gelungen. Danach bewegt sich das Gas in der Atmosphäre von Beteigeuze in gewaltigen Blasen heftig auf und ab, und diese erreichen fast die Größe des Sterns selbst, der einst als Supernova explodieren wird. (Astronomy & Astrophysics, 2009, im Druck)


Künstlerische Darstellung von Beteigeuze im Sternbild Orion. Das Bild zeigt, wie eine gewaltige Menge von Material von der Oberfläche des Sterns in den umgebenden Raum hinausgeschleudert wird. Der Durchmesser des Riesensterns übersteigt die Dimensionen des inneren Sonnensystems. Bild: ESO/L. Calcada

In einer klaren Winternacht steht das Sternbild Orion in unseren Breiten hoch im Süden. An der linken Schulter des mythologischen Himmelsjägers funkelt ein heller, orangefarbener Stern: Beteigeuze, ein sogenannter roter Überriese mit gewaltigem Durchmesser. An die Stelle unserer Sonne versetzt, würde er die inneren Planeten Merkur, Venus, Erde und Mars verschlucken und sich fast bis zur Umlaufbahn von Jupiter erstrecken. Dieser Stern strahlt extrem hell, sendet er doch über 100000-mal mehr Licht aus als die Sonne.

Beteigeuze befindet sich in der letzten Phase seines - für Sterne - ohnehin recht kurzen Lebens von nur einigen Millionen Jahren. Er ist unruhig und bläst in Form eines heftigen "Sternwinds" eine riesige Menge an Molekülen und Staub ins freie Weltall. Dieses Material fließt in den Kreislauf der Elemente und dient als Baustoff für die nächste Generation von Sternen, vielleicht auch für Planeten ähnlich der Erde. Tatsächlich büßt Beteigeuze jährlich ungefähr eine Erdmasse an Substanz ein.

Wie genau verliert dieser Stern einen Teil seiner Materie, die normalerweise durch die Gravitation an ihn gebunden wäre? Am besten, man könnte diesen Prozess unmittelbar am Ort seiner Entstehung beobachten - also dort, wo die Materie von der Oberfläche herausgeschleudert wird. Das stellt hohe Anforderungen an die Beobachtungstechnik. Obwohl Beteigeuze einen Durchmesser von 1,3 Milliarden Kilometern besitzt (Sonne: 1,39 Millionen), erscheint der Stern aufgrund seiner Entfernung von 640 Lichtjahren selbst in den größten Teleskopen lediglich als verwaschener rötlicher Fleck unter einem Winkel von nicht mehr als 43 Milli-Bogensekunden.

Daher nutzen die Astronomen eine spezielle Beobachtungstechnik: die Interferometrie. Bei dieser Methode werden zwei oder mehr Einzelteleskope zusammengeschaltet und liefern so eine wesentlich höhere Winkelauflösung als ein einziges Fernrohr. Das Very Large Telescope Interferometer (VLTI) auf dem Cerro Paranal in Chile, das von der Europäischen Südsternwarte (ESO) betrieben wird, ist eines der größten Interferometer der Erde. Ein Team von Astronomen aus Instituten in Deutschland, Frankreich und Italien hat Beteigeuze nun mit dem AMBER-Instrument zur Interferometrie im Nahinfrarot beobachtet. Das erreichte Auflösungsvermögen würde ausreichen, um eine 1-Euro-Münze auf dem Brandenburger Tor in Berlin von Bonn aus zu erkennen.

"Unsere Messungen ermöglichen den bisher schärfsten Blick auf Beteigeuze", sagt Keiichi Ohnaka vom Max-Planck-Institut für Radioastronomie und Erstautor des Artikels in Astronomy & Astrophysics. "Es ist uns gelungen, zum ersten Mal die Gasbewegungen in der Atmosphäre eines anderen Sterns als der Sonne räumlich aufzulösen. So können wir diese Bewegungen in unterschiedlichen Bereichen der Sternoberfläche studieren."

Die AMBER-Beobachtungen zeigen, dass sich das Gas in der Atmosphäre von Beteigeuze mit Geschwindigkeiten von 40000 Kilometern pro Stunde auf- und abbewegt. Der Durchmesser der beobachteten Gasblasen entspricht etwa dem der Marsbahn in unserem Planetensystem und erreicht damit die Dimensionen des Sterns selbst. Während die Astronomen über die exakte Ursache dieser heftigen Aktivität noch rätseln, zeigen die Messungen bereits jetzt, wie der Masseverlust bei dem roten Überriesen funktioniert: Die gewaltigen Gasblasen stoßen Materie von der Sternoberfläche in den umgebenden Raum aus. Das bedeutet auch, dass die Materie nicht ruhig und gleichförmig als Sternwind abfließt, sondern eher explosiv in Form von Materiebögen oder Klumpen.

Der Tod dieses gewaltigen Sterns steht unmittelbar bevor: In einigen Tausend bis Hunderttausend Jahren wird Beteigeuze als kosmisches Feuerwerk aufflammen - als Supernova. Da der Gigant der Erde vergleichsweise nahesteht, wird man ihn mit bloßem Auge sogar am Taghimmel sehen können.

Originalveröffentlichung:

K. Ohnaka, K.-H. Hofmann, M. Benisty, A. Chelli, T. Driebe, F. Millour, R. Petrov, D. Schertl, Ph. Stee, F. Vakili, G. Weigelt
Spatially resolving the inhomogeneous structure of the dynamical atmosphere of Betelgeuse with VLTI/AMBER

Astronomy & Astrophysics, 2009 (im Druck)

Weitere Informationen erhalten Sie von:

Dr. Keiichi Ohnaka
Max-Planck-Institut für Radioastronomie, Bonn
Tel.: +49 228 525-353
Fax: +49 228 525-229
E-Mail: kohnaka@mpifr.de
Prof. Dr. Gerd Weigelt
Max-Planck-Institut für Radioastronomie, Bonn
Tel.: +49 228 525-243
Fax: +49 228 525-229
E-Mail: weigelt@mpifr.de
Dr. Norbert Junkes, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Radioastronomie, Bonn
Tel.: +49 228 525-399
E-Mail: njunkes@mpifr.de

Dr. Felicitas von Aretin | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

nachricht Good vibrations feel the force
23.02.2018 | Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungsnachrichten

Good vibrations feel the force

23.02.2018 | Physik Astronomie

Empa zeigt «Tankstelle der Zukunft»

23.02.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics