Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Gigant in Aufruhr

30.07.2009
Beobachtungen des Sterns Beteigeuze zeigen erstmals heftige Gasbewegungen auf seiner Oberfläche

Einem internationalen Team von Astronomen unter der Leitung von Keiichi Ohnaka vom Max-Planck-Institut für Radioastronomie in Bonn ist die bisher schärfste Darstellung eines sterbenden Riesensterns gelungen. Danach bewegt sich das Gas in der Atmosphäre von Beteigeuze in gewaltigen Blasen heftig auf und ab, und diese erreichen fast die Größe des Sterns selbst, der einst als Supernova explodieren wird. (Astronomy & Astrophysics, 2009, im Druck)


Künstlerische Darstellung von Beteigeuze im Sternbild Orion. Das Bild zeigt, wie eine gewaltige Menge von Material von der Oberfläche des Sterns in den umgebenden Raum hinausgeschleudert wird. Der Durchmesser des Riesensterns übersteigt die Dimensionen des inneren Sonnensystems. Bild: ESO/L. Calcada

In einer klaren Winternacht steht das Sternbild Orion in unseren Breiten hoch im Süden. An der linken Schulter des mythologischen Himmelsjägers funkelt ein heller, orangefarbener Stern: Beteigeuze, ein sogenannter roter Überriese mit gewaltigem Durchmesser. An die Stelle unserer Sonne versetzt, würde er die inneren Planeten Merkur, Venus, Erde und Mars verschlucken und sich fast bis zur Umlaufbahn von Jupiter erstrecken. Dieser Stern strahlt extrem hell, sendet er doch über 100000-mal mehr Licht aus als die Sonne.

Beteigeuze befindet sich in der letzten Phase seines - für Sterne - ohnehin recht kurzen Lebens von nur einigen Millionen Jahren. Er ist unruhig und bläst in Form eines heftigen "Sternwinds" eine riesige Menge an Molekülen und Staub ins freie Weltall. Dieses Material fließt in den Kreislauf der Elemente und dient als Baustoff für die nächste Generation von Sternen, vielleicht auch für Planeten ähnlich der Erde. Tatsächlich büßt Beteigeuze jährlich ungefähr eine Erdmasse an Substanz ein.

Wie genau verliert dieser Stern einen Teil seiner Materie, die normalerweise durch die Gravitation an ihn gebunden wäre? Am besten, man könnte diesen Prozess unmittelbar am Ort seiner Entstehung beobachten - also dort, wo die Materie von der Oberfläche herausgeschleudert wird. Das stellt hohe Anforderungen an die Beobachtungstechnik. Obwohl Beteigeuze einen Durchmesser von 1,3 Milliarden Kilometern besitzt (Sonne: 1,39 Millionen), erscheint der Stern aufgrund seiner Entfernung von 640 Lichtjahren selbst in den größten Teleskopen lediglich als verwaschener rötlicher Fleck unter einem Winkel von nicht mehr als 43 Milli-Bogensekunden.

Daher nutzen die Astronomen eine spezielle Beobachtungstechnik: die Interferometrie. Bei dieser Methode werden zwei oder mehr Einzelteleskope zusammengeschaltet und liefern so eine wesentlich höhere Winkelauflösung als ein einziges Fernrohr. Das Very Large Telescope Interferometer (VLTI) auf dem Cerro Paranal in Chile, das von der Europäischen Südsternwarte (ESO) betrieben wird, ist eines der größten Interferometer der Erde. Ein Team von Astronomen aus Instituten in Deutschland, Frankreich und Italien hat Beteigeuze nun mit dem AMBER-Instrument zur Interferometrie im Nahinfrarot beobachtet. Das erreichte Auflösungsvermögen würde ausreichen, um eine 1-Euro-Münze auf dem Brandenburger Tor in Berlin von Bonn aus zu erkennen.

"Unsere Messungen ermöglichen den bisher schärfsten Blick auf Beteigeuze", sagt Keiichi Ohnaka vom Max-Planck-Institut für Radioastronomie und Erstautor des Artikels in Astronomy & Astrophysics. "Es ist uns gelungen, zum ersten Mal die Gasbewegungen in der Atmosphäre eines anderen Sterns als der Sonne räumlich aufzulösen. So können wir diese Bewegungen in unterschiedlichen Bereichen der Sternoberfläche studieren."

Die AMBER-Beobachtungen zeigen, dass sich das Gas in der Atmosphäre von Beteigeuze mit Geschwindigkeiten von 40000 Kilometern pro Stunde auf- und abbewegt. Der Durchmesser der beobachteten Gasblasen entspricht etwa dem der Marsbahn in unserem Planetensystem und erreicht damit die Dimensionen des Sterns selbst. Während die Astronomen über die exakte Ursache dieser heftigen Aktivität noch rätseln, zeigen die Messungen bereits jetzt, wie der Masseverlust bei dem roten Überriesen funktioniert: Die gewaltigen Gasblasen stoßen Materie von der Sternoberfläche in den umgebenden Raum aus. Das bedeutet auch, dass die Materie nicht ruhig und gleichförmig als Sternwind abfließt, sondern eher explosiv in Form von Materiebögen oder Klumpen.

Der Tod dieses gewaltigen Sterns steht unmittelbar bevor: In einigen Tausend bis Hunderttausend Jahren wird Beteigeuze als kosmisches Feuerwerk aufflammen - als Supernova. Da der Gigant der Erde vergleichsweise nahesteht, wird man ihn mit bloßem Auge sogar am Taghimmel sehen können.

Originalveröffentlichung:

K. Ohnaka, K.-H. Hofmann, M. Benisty, A. Chelli, T. Driebe, F. Millour, R. Petrov, D. Schertl, Ph. Stee, F. Vakili, G. Weigelt
Spatially resolving the inhomogeneous structure of the dynamical atmosphere of Betelgeuse with VLTI/AMBER

Astronomy & Astrophysics, 2009 (im Druck)

Weitere Informationen erhalten Sie von:

Dr. Keiichi Ohnaka
Max-Planck-Institut für Radioastronomie, Bonn
Tel.: +49 228 525-353
Fax: +49 228 525-229
E-Mail: kohnaka@mpifr.de
Prof. Dr. Gerd Weigelt
Max-Planck-Institut für Radioastronomie, Bonn
Tel.: +49 228 525-243
Fax: +49 228 525-229
E-Mail: weigelt@mpifr.de
Dr. Norbert Junkes, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Radioastronomie, Bonn
Tel.: +49 228 525-399
E-Mail: njunkes@mpifr.de

Dr. Felicitas von Aretin | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Hochspannung für den Teilchenbeschleuniger der Zukunft
24.05.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten