Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geschüttelt, nicht gerührt: Kontrolle über komplexe Systeme vieler Quantenteilchen

04.06.2014

An der TU Wien wurde ein neue Methode entwickelt, quantenmechanische Schwingungszustände für Präzisionsmessungen zu verwenden.

Das bekannte Konzept des Ramsey Interferometers wird auf ein komplexes Vielteilchensystem übertragen, das aus hunderten Atomen besteht.


Mit einem Atomchip (oben) kann das Kondensat genau kontrolliert werden.

Quantenteilchen benehmen sich manchmal wie Wellen. Für hochpräzisions-Messungen nutzt man das gerne aus, beispielsweise für Atom-Uhren. Während man normalerweise aber nur die Welleneigenschaften eines einzelnen Teilchens verwendet, gelang es einem Team am Vienna Center for Quantum Science and Technology (VCQ) an der TU Wien nun, hunderte Rubidium-Atome eines ultrakalten Bose-Einstein-Kondensates durch gezieltes Schütteln gemeinsam quantenmechanisch zu kontrollieren. Damit kann man nicht bloß wie bisher innere Zustände einzelner Atome für interferometrische Messungen nutzen, sondern den kollektiven Bewegungszustand aller Teilchen.

Überlagerungen verschiedener Zustände

Nach den Regeln der Quantenphysik können manche physikalischen Größen nur ganz bestimmte Werte annehmen. Misst man etwa die Energie eines Elektrons im Atom, dann findet man es immer in speziellen Energiezuständen, andere Energie-Werte sind nicht erlaubt. Ähnliches gilt auch für die Bewegung von Teilchen, wenn man sie auf engem Raum einsperrt.

„Wir fangen hunderte Rubidium Atome in einer magnetischen Falle und kühlen sie ab, sodass sie zu einem ultrakalten Bose-Einstein-Kondensat werden“, erklärt Prof. Jörg Schmiedmayer vom Atominstitut der TU Wien. „Dieses Bose-Einstein-Kondensat verhält sich in dieser Falle dann wie eine gigantische Materiewelle.“ Allerdings erlaubt die Quantenphysik nicht jede Art von Bewegung, sondern nur ganz bestimmte Wellen.

Unterschiedliche Wellenzustände

„Man kann sich das vorstellen wie Schallwellen in einer Flöte“, sagt Sandrine van Frank. „Bläst man hinein, entsteht eine Schallwelle mit einer bestimmten Schwingung, bläst man stärker, erzeugt man einen höheren Oberton.“ Quantenphysikalisch ist es allerdings möglich, verschiedene Wellen-Zustände gleichzeitig anzuregen. Mit einem maßgeschneiderten elektromagnetischen Puls, entwickelt in Zusammenarbeit mit Prof. Tommaso Calarco vom Institut für Quanteninformationsverarbeitung der Universität Ulm, lässt sich das Bose-Einstein-Kondensat schütteln, sodass es nicht bloß einen der zwei erlaubten Bewegungs-Wellenzustände annimmt, sondern beide auf ein Mal.

Eine solche Überlagerung von Zuständen ist in der Quantenphysik ganz normal. Bemerkenswert ist allerdings, dass es hier gelingt, ein für Quanten-Maßstäbe großes System aus hunderten Atomen mit sehr vielen internen Freiheitsgraden in so einen Überlagerungs-Zustand zu versetzen. Diese Überlagerungen sind nämlich meist extrem fragil, und je größer ein Objekt ist, umso leichter werden die quantenmechanischen Eigenschaften von Überlagerungen aus mehreren erlauben Zuständen zerstört – ein Phänomen, das man in der Quantenphysik „Dekohärenz“ nennt. Dekohärenz gilt heute als größtes Problem bei der Entwicklung neuer Quantentechnologien wie dem Quantencomputer.

Das richtige Schütteln ist die Kunst

„Nachdem wir das Kondensat mit dem ersten Puls geschüttelt haben, vollführt es zwei verschiedene Vibrationsbewegungen gleichzeitig“, sagt van Frank. „Nach einer bestimmten Zeit schütteln wir das Kondensat dann ein zweites Mal, und zwar so, dass die beiden überlagerten Vibrationsbewegungen wieder auf eine einzelne Bewegung vereint werden.“ Welche der beiden erlaubten Schwingungen dabei herauskommt hängt von der Zeitspanne zwischen den beiden Pulsen und der quantenmechanischen Phase der Überlagerung ab. Eine solche Pulsfolge ist als Ramsey-Sequenz bekannt und wird in vielen Bereichen für Präzisionsmessungen verwendet. Hier ist es nun gelungen, diese Technik auf ein ganzes Bose-Einstein Kondensat mit all seinen Vielteilchenzuständen zu übertragen.

Der richtige Kick

Um das System kontrollieren zu können war es entscheidend, genau die richtige Art von Puls zu finden, mit dem das Kondensat geschüttelt werden muss. Der Puls soll einen Übergang zwischen den beiden Vibrationszuständen ermöglichen, die man überlagern will. Alle weiteren möglichen Quantenzustände sollten allerdings keine Rolle spielen. Dieses Ausschließen aller weiteren Zustände stellte sich als ganz besonders wichtig heraus, um den unerwünschten Dekohärenz-Effekt im Zaum zu halten.

„Unser Resultat beweist, dass man für Quanten-Experimente auch Vibrations-Zustände hunderter Atome verwenden kann“, erklärt Schmiedmayer. Man kann diese Quantenzustände verwenden um Information zu speichern, und eines Tages vielleicht sogar um gezielt Berechnungen durchzuführen. Die bemerkenswerte Stabilität dieser Zustände erlaubt auch neue Erkenntnisse über das Dekohärenz-Verhalten großer Systeme, die aus vielen Teilchen bestehen – ein Gebiet, auf dem es noch viel zu forschen gibt. Als nächsten Schritt sollen nun nicht nur Vibrationen sondern auch Rotationen des Bose-Einstein-Kondensats untersucht werden. In der Quanten-Welt ist nämlich beides gleichzeitig möglich: Geschüttelt und gerührt.

Die Forschungsergebnisse wurden nun im Journal „Nature Communications“ veröffentlicht. Das Team der TU Wien wurde von Forschungsgruppen der Universität Hamburg und der Universität Ulm unterstützt.
Nature Communications 5, 4009
doi:10.1038/ncomms5009

Rückfragehinweise:

Prof. Jörg Schmiedmayer
Atominstitut, Vienna Center for Quantum Science and Technology (VCQ)
Technische Universität Wien
Stadionallee 2, 1020 Wien
+43 (1) 58801 141888
schmiedmayer@AtomChip.org

Prof. Thorsten Schumm
Atominstitut, Vienna Center for Quantum Science and Technology (VCQ)
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141896
thorsten.schumm@tuwien.ac.at

Sandrine Van Frank, MSc
Atominstitut, Vienna Center for Quantum Science and Technology (VCQ)
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141889
sandrine.frank@tuwien.ac.at

Weitere Informationen:

http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2014/shaken/ Bilderdownload
http://www.nature.com/ncomms/2014/140530/ncomms5009/full/ncomms5009.html Originalpublikation

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Maschinelles Lernen im Quantenlabor
19.01.2018 | Universität Innsbruck

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie