Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geschüttelt, nicht gerührt: Kontrolle über komplexe Systeme vieler Quantenteilchen

04.06.2014

An der TU Wien wurde ein neue Methode entwickelt, quantenmechanische Schwingungszustände für Präzisionsmessungen zu verwenden.

Das bekannte Konzept des Ramsey Interferometers wird auf ein komplexes Vielteilchensystem übertragen, das aus hunderten Atomen besteht.


Mit einem Atomchip (oben) kann das Kondensat genau kontrolliert werden.

Quantenteilchen benehmen sich manchmal wie Wellen. Für hochpräzisions-Messungen nutzt man das gerne aus, beispielsweise für Atom-Uhren. Während man normalerweise aber nur die Welleneigenschaften eines einzelnen Teilchens verwendet, gelang es einem Team am Vienna Center for Quantum Science and Technology (VCQ) an der TU Wien nun, hunderte Rubidium-Atome eines ultrakalten Bose-Einstein-Kondensates durch gezieltes Schütteln gemeinsam quantenmechanisch zu kontrollieren. Damit kann man nicht bloß wie bisher innere Zustände einzelner Atome für interferometrische Messungen nutzen, sondern den kollektiven Bewegungszustand aller Teilchen.

Überlagerungen verschiedener Zustände

Nach den Regeln der Quantenphysik können manche physikalischen Größen nur ganz bestimmte Werte annehmen. Misst man etwa die Energie eines Elektrons im Atom, dann findet man es immer in speziellen Energiezuständen, andere Energie-Werte sind nicht erlaubt. Ähnliches gilt auch für die Bewegung von Teilchen, wenn man sie auf engem Raum einsperrt.

„Wir fangen hunderte Rubidium Atome in einer magnetischen Falle und kühlen sie ab, sodass sie zu einem ultrakalten Bose-Einstein-Kondensat werden“, erklärt Prof. Jörg Schmiedmayer vom Atominstitut der TU Wien. „Dieses Bose-Einstein-Kondensat verhält sich in dieser Falle dann wie eine gigantische Materiewelle.“ Allerdings erlaubt die Quantenphysik nicht jede Art von Bewegung, sondern nur ganz bestimmte Wellen.

Unterschiedliche Wellenzustände

„Man kann sich das vorstellen wie Schallwellen in einer Flöte“, sagt Sandrine van Frank. „Bläst man hinein, entsteht eine Schallwelle mit einer bestimmten Schwingung, bläst man stärker, erzeugt man einen höheren Oberton.“ Quantenphysikalisch ist es allerdings möglich, verschiedene Wellen-Zustände gleichzeitig anzuregen. Mit einem maßgeschneiderten elektromagnetischen Puls, entwickelt in Zusammenarbeit mit Prof. Tommaso Calarco vom Institut für Quanteninformationsverarbeitung der Universität Ulm, lässt sich das Bose-Einstein-Kondensat schütteln, sodass es nicht bloß einen der zwei erlaubten Bewegungs-Wellenzustände annimmt, sondern beide auf ein Mal.

Eine solche Überlagerung von Zuständen ist in der Quantenphysik ganz normal. Bemerkenswert ist allerdings, dass es hier gelingt, ein für Quanten-Maßstäbe großes System aus hunderten Atomen mit sehr vielen internen Freiheitsgraden in so einen Überlagerungs-Zustand zu versetzen. Diese Überlagerungen sind nämlich meist extrem fragil, und je größer ein Objekt ist, umso leichter werden die quantenmechanischen Eigenschaften von Überlagerungen aus mehreren erlauben Zuständen zerstört – ein Phänomen, das man in der Quantenphysik „Dekohärenz“ nennt. Dekohärenz gilt heute als größtes Problem bei der Entwicklung neuer Quantentechnologien wie dem Quantencomputer.

Das richtige Schütteln ist die Kunst

„Nachdem wir das Kondensat mit dem ersten Puls geschüttelt haben, vollführt es zwei verschiedene Vibrationsbewegungen gleichzeitig“, sagt van Frank. „Nach einer bestimmten Zeit schütteln wir das Kondensat dann ein zweites Mal, und zwar so, dass die beiden überlagerten Vibrationsbewegungen wieder auf eine einzelne Bewegung vereint werden.“ Welche der beiden erlaubten Schwingungen dabei herauskommt hängt von der Zeitspanne zwischen den beiden Pulsen und der quantenmechanischen Phase der Überlagerung ab. Eine solche Pulsfolge ist als Ramsey-Sequenz bekannt und wird in vielen Bereichen für Präzisionsmessungen verwendet. Hier ist es nun gelungen, diese Technik auf ein ganzes Bose-Einstein Kondensat mit all seinen Vielteilchenzuständen zu übertragen.

Der richtige Kick

Um das System kontrollieren zu können war es entscheidend, genau die richtige Art von Puls zu finden, mit dem das Kondensat geschüttelt werden muss. Der Puls soll einen Übergang zwischen den beiden Vibrationszuständen ermöglichen, die man überlagern will. Alle weiteren möglichen Quantenzustände sollten allerdings keine Rolle spielen. Dieses Ausschließen aller weiteren Zustände stellte sich als ganz besonders wichtig heraus, um den unerwünschten Dekohärenz-Effekt im Zaum zu halten.

„Unser Resultat beweist, dass man für Quanten-Experimente auch Vibrations-Zustände hunderter Atome verwenden kann“, erklärt Schmiedmayer. Man kann diese Quantenzustände verwenden um Information zu speichern, und eines Tages vielleicht sogar um gezielt Berechnungen durchzuführen. Die bemerkenswerte Stabilität dieser Zustände erlaubt auch neue Erkenntnisse über das Dekohärenz-Verhalten großer Systeme, die aus vielen Teilchen bestehen – ein Gebiet, auf dem es noch viel zu forschen gibt. Als nächsten Schritt sollen nun nicht nur Vibrationen sondern auch Rotationen des Bose-Einstein-Kondensats untersucht werden. In der Quanten-Welt ist nämlich beides gleichzeitig möglich: Geschüttelt und gerührt.

Die Forschungsergebnisse wurden nun im Journal „Nature Communications“ veröffentlicht. Das Team der TU Wien wurde von Forschungsgruppen der Universität Hamburg und der Universität Ulm unterstützt.
Nature Communications 5, 4009
doi:10.1038/ncomms5009

Rückfragehinweise:

Prof. Jörg Schmiedmayer
Atominstitut, Vienna Center for Quantum Science and Technology (VCQ)
Technische Universität Wien
Stadionallee 2, 1020 Wien
+43 (1) 58801 141888
schmiedmayer@AtomChip.org

Prof. Thorsten Schumm
Atominstitut, Vienna Center for Quantum Science and Technology (VCQ)
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141896
thorsten.schumm@tuwien.ac.at

Sandrine Van Frank, MSc
Atominstitut, Vienna Center for Quantum Science and Technology (VCQ)
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141889
sandrine.frank@tuwien.ac.at

Weitere Informationen:

http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2014/shaken/ Bilderdownload
http://www.nature.com/ncomms/2014/140530/ncomms5009/full/ncomms5009.html Originalpublikation

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Flashmob der Moleküle
19.01.2017 | Technische Universität Wien

nachricht Verkehrsstau im Nichts
19.01.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

21.500 Euro für eine grüne Zukunft – Unserer Umwelt zuliebe

20.01.2017 | Unternehmensmeldung

innovations-report im Interview mit Rolf-Dieter Lafrenz, Gründer und Geschäftsführer der Hamburger Start ups Cargonexx

20.01.2017 | Unternehmensmeldung

Niederlande: Intelligente Lösungen für Bahn und Stahlindustrie werden gefördert

20.01.2017 | Förderungen Preise