Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gequetschte Quanten-Katzen

26.05.2015

ETH-Professor Jonathan Home und seine Mitarbeiter griffen tief in die Trickkiste und kreierten sogenannte «gequetschte Schrödinger-Katzen». Diese Quantensysteme könnten für zukünftige Technologien äusserst nützlich sein.

Die Quantenphysik steckt voller faszinierender Phänomene. Da ist zum Beispiel die Katze aus dem berühmten Gedankenexperiment des Physikers Erwin Schrödinger. Sie kann zugleich tot und lebendig sein, da ihr Leben vom quantenmechanisch bestimmten Zustand eines radioaktiv zerfallenden Atoms abhängt, das seinerseits Giftgas in den Katzenkäfig entweichen lässt. Solange man den Zustand des Atoms nicht gemessen hat, weiss man auch nichts über den Gesundheitszustand der armen Katze – Atom und Mieze sind aufs engste miteinander «verschränkt».

Ähnlich verblüffend sind die etwas weniger bekannten, sogenannt gequetschten Quantenzustände: Normalerweise kann man, nach der Heisenbergschen Unschärferelation, bestimmte Paare von physikalischen Messgrössen – beispielsweise den Ort und die Geschwindigkeit eines Quantenteilchens – nicht beliebig genau bestimmen.

Allerdings lässt die Natur hier einen Tauschhandel zu: Präpariert man das Teilchen entsprechend, so lässt sich eine der Grössen etwas exakter messen, wenn man dafür eine ungenauere Kenntnis der anderen Grösse in Kauf nimmt. Das Präparieren wird in diesem Fall «quetschen» genannt, weil die Unschärfe der einen Messgrösse verkleinert (gequetscht) wird.

Schrödingers Katze und die gequetschten Quantenzustände sind, jedes für sich genommen, bereits wichtige physikalische Phänomene, auf denen vielversprechende Zukunftstechnologien beruhen. ETH-Forschern ist es nun gelungen, die beiden in einem Experiment gewinnbringend zu vereinen.

Quetschen und Verschieben

In ihrem Labor fangen Jonathan Home, Professor für experimentelle Quantenoptik und Photonik, und seine Kollegen dazu ein einzelnes elektrisch geladenes Kalzium-Ion in einem winzigen Käfig aus elektrischen Feldern ein. Mit Hilfe von Laserstrahlen kühlen sie das Ion soweit ab, dass es sich im Käfig nur noch minimal bewegt. Dann folgt ein Griff in die Trickkiste: Die Forscher «quetschen» den Bewegungszustand des Ions, indem sie es mit Laserlicht beschiessen und dabei geschickt den spontanen Zerfall seiner Energiezustände ausnutzen.

Am Ende ist die Wellenfunktion des Ions (die seine räumliche Aufenthaltswahrscheinlichkeit angibt) buchstäblich zusammengestaucht : Die Physiker wissen jetzt genauer, wo sich das Ion räumlich befindet, dafür hat die Unschärfe in seiner Geschwindigkeit entsprechend zugenommen. «Diese Zustandsquetschung ist ein wichtiges Werkzeug für uns», erklärt Home. «Zusammen mit einem zweiten Werkzeug – sogenannten zustandsabhängigen Kräften – können wir eine ‹gequetschte Schrödinger-Katze› herstellen.»

Dazu wird das Ion wiederum Laserstrahlen ausgesetzt, die es nach links oder rechts verschieben. Die Richtung der vom Laser erzeugten Kräfte hängt davon ab, in welchem inneren Energiezustand sich das Ion befindet. Diesen kann man als nach oben oder unten zeigenden Pfeil oder sogenannten Spin abbilden. Ist das Ion in einem Energie-Überlagerungszustand aus «Spin oben» und «Spin unten», so wirkt die Kraft sowohl nach rechts als auch nach links. Auf diese Weise ergibt sich eine besondere Situation, die Schrödingers Katze ähnelt: Das Ion befindet sich in einem Zwitter-Zustand, nämlich zugleich rechts (Katze lebt) und links (Katze ist tot). Erst wenn man den Spin misst, entscheidet sich, ob das Ion rechts oder links ist.

Stabile Katzen für Quantencomputer

Das Besondere an der Schrödinger-Katze von Home und seinen Mitarbeitern ist, dass sich durch die anfängliche Quetschung die Ionen-Zustände «rechts» und «links» besonders leicht unterscheiden lassen. Zugleich ist die Katze recht gross, da die Ionen- Zustände weit voneinander entfernt sind. «Selbst ohne die Quetschung ist unsere ‹Katze› die grösste, die bislang hergestellt wurde», unterstreicht Home. «Mit der Quetschung sind die Zustände «rechts» und «links» noch besser unterscheidbar – sie sind ganze sechzigmal schmaler als der Abstand zwischen ihnen.»

Dabei geht es freilich nicht bloss um wissenschaftliche Rekorde, sondern auch um praktische Anwendungen. Gequetschte Schrödinger-Katzen sind nämlich extrem stabil gegenüber bestimmten Störungen, die normalerweise dazu führen, dass aus ihnen ganz normale «Katzen» ohne Quanteneigenschaften werden. Diese Stabilität liesse sich etwa zur Realisierung von Quantencomputern ausnutzen, die mit Quanten-Überlagerungen rechnen. Auch ultra-präzise Messungen könnten so unempfindlicher gegen unerwünschte äussere Einflüsse werden.

Literaturhinweis

Lo HY, Kienzler D, de Clercq L, Marinelli M, Negnevitsky V, Keitch, BC, Home JP: Spin–motion entanglement and state diagnosis with squeezed oscillator wavepackets. Nature, 21. Mai 2015, doi: 10.1038/nature14458 [http://dx.doi.org/10.1038/nature14458]

News und Medienstelle | ETH Zürich

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics