Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Genauer als Heisenberg erlaubt? Die Unschärfe in Gegenwart eines Quantenspeichers

26.07.2010
Ein Quantenteilchen ist schwer zu fassen, denn nicht alle seine Eigenschaften können gleichzeitig exakt gemessen werden. Für bestimmte Parameterpaare – zum Beispiel Ort und Impuls – bleibt ein Rest an Ungenauigkeit, festgelegt durch die Unschärferelation von Heisenberg.

Das ist ein wichtiger Aspekt für die Quantenkryptographie, denn hier werden Informationen in Form von Quantenzuständen übertragen, etwa als Polarisation von Lichtteilchen. Eine Gruppe von Wissenschaftlern der LMU München und der ETH Zürich, unter ihnen Professor Matthias Christandl, konnten nun Folgendes zeigen: Ort und Impuls lassen sich besser vorhersagen als es von Heisenbergs Unschärferelation zu erwarten wäre, wenn der Empfänger einen Quantenspeicher, aufgebaut aus Ionen oder Atomen, zu Hilfe nimmt.

Erstmals wurde so gezeigt, dass die Unschärfe von der Stärke der Korrelation zwischen dem Quantenspeicher und dem Quantenteilchen abhängt. „Unser Ergebnis trägt nicht nur zu einem besseren Verständnis von Quantenspeichern bei, sondern resultiert auch in einem Verfahren, die Korrelation zweier Quantenteilchen zu bestimmen“, sagt Christandl. „Der Zusammenhang könnte auch helfen, die Sicherheit von quantenkryptographischen Systemen zu überprüfen.“ (Nature Physics online, 25. Juli 2010)

Quantencomputer rechnen nicht wie klassische Computer mit Bits, sondern mit sogenannten Quantenbits oder Qubits, also quantenmechanischen Zuständen eines Teilchens. Das Besondere an Quantenteilchen ist, dass sie mehrere Zustände gleichzeitig annehmen können, also 0 oder 1 oder eine Überlagerung aus 0 und 1. Die Möglichkeit der Überlagerung eröffnet dem Quantencomputer enormes neues Rechenpotential. „Wir wollen mit unseren Forschungen herausfinden, wie Quantenspeicher, also Speicher für Quantenbits, in Zukunft genutzt werden können und wie sie die Übertragung von Quantenbits beeinflussen,“ erklärt Christandl, der im Juni 2010 von der LMU München an die ETH Zürich wechselte.

Die Heisenbergsche Unschärferelation ist ein zentraler Aspekt von Quantencomputern. Sie legt fest, wie genau ein Quantenzustand bestimmt werden kann. Umgekehrt besagt die Quantenmechanik, dass schon die Wahl der Messmethode den Zustand des Quantenteilchens ändern kann. Sobald eine Größe exakt gemessen wird, fällt das Teilchen für den anderen Parameter in den maximal unbestimmten Zustand. Dieses Prinzip macht sich die Quantenkryptographie zur Verschlüsselung von Daten zunutze. Sie verwendet unter anderem Quantenteilchen, deren Zustand so korreliert ist, dass die Wahrscheinlichkeit, mit der die Messung des einen Teilchens ein bestimmtes Ergebnis liefert, vom Zustand des anderen Teilchens abhängt. Ein Abhörversuch würde auffliegen, weil die Messung den Zustand des „abgehörten“ Teilchens verändert.

Das Forscherteam der ETH Zürich und der LMU München konnte nun zeigen, dass sich das Messergebnis eines Quantenteilchens besser vorhersagen lässt, wenn Information über das Teilchen in einem Quantenspeicher zur Verfügung steht. Ein Quantenspeicher kann zum Beispiel aus Ionen oder Atomen aufgebaut sein. Damit wurde erstmals eine Formulierung der Heisenbergschen Unschärferelation hergeleitet, welche den Einfluss eines Quantenspeichers in Betracht zieht. Bei sehr stark korrelierten, verschränkten Teilchen kann die Unschärfe sogar ganz verschwinden. Christandl zieht einen Vergleich: „Man könnte sagen, dass die Unordnung oder Unbestimmtheit des Teilchens von den Informationen abhängt, die im Quantenspeicher enthalten sind. Das ist ähnlich wie bei Papieren auf einem Schreibtisch: Sie zeigen oft nur für denjenigen eine Ordnung, der sie dort platziert hat.“

„Unser Ergebnis trägt nicht nur zu einem besseren Verständnis von Quantenspeichern bei, sondern lässt auch die Korrelation zweier Quantenteilchen bestimmen“, sagt Christandl. „Der Zusammenhang könnte auch helfen, die Sicherheit von quantenkryptographischen Systemen zu überprüfen.“ Vorstellbar sei dies im Rahmen eines Spiels, wenn Spieler B an Spieler A ein Teilchen sendet. Die Messung durch A schaffe eine Unschärfe. „B kann nun ebenfalls messen, wird aber den von A ermittelten Wert nur bis zur Heisenbergschen Grenze treffen“, sagt der Physiker. „Verwendet er einen Quantenspeicher, wird er den gesuchten Wert treffen und das Spiel gewinnen.“ (CA)

Publikation:
“The Uncertainty Principle in the Presence of Quantum Memory“,
M. Berta, M. Christandl, R. Colbeck, J.M. Renes, R. Renner
Nature Physics, 25. Juli 2010
Ansprechpartner:
Prof. Dr. Matthias Christandl
Theoretische Physik, ETH Zürich
Tel.: +41 44 633 25 92
E-Mail: christandl@phys.ethz.ch

Luise Dirscherl | idw
Weitere Informationen:
http://www.ethz.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Klein bestimmt über groß?
29.03.2017 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Quantenkommunikation: Wie man das Rauschen überlistet
29.03.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten