Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geheimnissen von explodierenden Clustern auf der Spur

24.02.2014
Die Untersuchung der Dynamik von Cluster-Explosionen mit Hilfe von intensiven extrem-ultravioletten (XUV) Pulsen war bisher begrenzt auf Großforschungsgeräte wie Freie Elektronen Laser. In einer kürzlichen Publikation wurde gezeigt, dass die Erforschung von Clustern jetzt auch mit intensiven XUV Pulsen in einem Labor mit einer neuentwickelten Lichtquelle möglich ist, die auf der Erzeugung von Höheren Harmonischen basiert. Das erste Mal wurde die Formierung von hoch angeregten Rydberg-Atomen durch Elektron-Ion-Rekombination während der Expansion von Clustern nachgewiesen, die anfänglich durch einen XUV-Puls ausgelöst wurde und die neue Einblicke in den Zersetzungsprozess des Clusters bietet.

Ein intensiver Lichtpuls, der mit schwach gebundenen van-der-Waals Clustern bestehend aus Tausenden von Atomen wechselwirkt, kann schließlich zu der Explosion des Clusters und dessen vollständiger Zersetzung führen. Während dieses Prozesses treten neuartige Ionisationsmechanismen auf, die nicht in Atomen beobachtet werden. Mit einem ausreichend intensiven Lichtpuls werden viele Elektronen von ihren Atomen losgelöst, die sich innerhalb des Clusters bewegen können und ein Plasma mit den Ionen auf einer Nanometer-Skala formen, ein sogenanntes Nanoplasma. Durch Kollisionen zwischen den Elektronen können einige von ihnen schließlich ausreichend Energie erhalten, um dem Cluster zu entfliehen. Ein Großteil der Elektronen bleibt jedoch gefangen im Cluster. Es wurde theoretisch vorhergesagt, dass im Nanoplasma Elektronen mit Ionen rekombinieren, um Rydberg-Atome zu formen, es gibt jedoch noch keinen experimentellen Beweis für diese Hypothese. 


Flugzeit-Spektrum für Xenon-Atome und Cluster mit einer durchschnittlichen Größe von 36000 Atomen. Für Cluster werden größere Fragmente wie Dimere und Trimere beobachtet. MBI


Linke Seite: 2D Impulsabbildung der Elektronen von Argon Clustern. Rechte Seite: Das Spektrum der kinetischen Energie (schwarze Kurve) zeigt eine gute Übereinstimmung mit numerischen Simulationen. MBI


Vorhergehende Experimente wurden an Großforschungsanlagen wie Freien Elektronen Lasern durchgeführt, die eine Größe von Hunderten von Metern bis hin zu Kilometern haben, und bereits überraschende Ergebnisse gezeigt haben wie z.B. die Erzeugung von sehr hohen Ladungszuständen, wenn ein intensiver XUV-Puls mit einem Cluster wechselwirkt. Der Zugang zu diesen Einrichtungen ist jedoch stark begrenzt, und die experimentellen Bedingungen sind extrem herausfordernd. Von daher ist die Verfügbarkeit von intensiven Lichtpulsen im extrem-ultravioletten Bereich aus anderen Quellen wichtig, um ein besseres Verständnis der verschiedenen Prozesse zu erlangen, die in Clustern und anderen ausgedehnten Objekten wie Bio-Molekülen stattfinden, wenn sie intensiven XUV-Pulsen ausgesetzt sind. 


Wissenschaftler des Max-Born-Instituts haben eine Lichtquelle basierend auf dem Prozess der Höheren Harmonischen Erzeugung entwickelt. Ein intensiver Lichtpuls im extrem-ultravioletten Bereich mit einer Dauer von 15 fs (1 fs=10 hoch -15 s) hat im Experiment mit Clustern interagiert, die aus Argon- und Xenon-Atomen bestanden. In der aktuellen Ausgabe von Physical Review Letters (Vol. 112-073003 publ. 20 February 2014) http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.073003 präsentieren Bernd Schütte, Marc Vrakking und Arnaud Rouzée die Ergebnisse dieser Untersuchungen, die eine sehr gute Übereinstimmung mit vorher erzielten Ergebnissen von Freien Elektronen Lasern zeigen. In Zusammenarbeit mit den Theoretikern Mathias Arbeiter und Thomas Fennel von der Universität Rostock war es möglich, die Ionisationsprozesse im Cluster numerisch zu simulieren und die experimentellen Ergebnisse zu reproduzieren. Desweitern wurde durch den Einsatz der sogenannten Velocity Map Imaging Technik eine bisher unentdeckte Verteilung von sehr langsamen Elektronen beobachtet, die auf die Formierung von hoch angeregten Rydberg-Atomen durch Elektron-Ion Rekombinationsprozesse während der Cluster-Expansion schließen lässt. Aufgrund der geringen Bindungsenergie der Elektronen ist das statische elektrische Feld des Detektors ausreichend stark, um die Rydberg-Atome zu ionisieren, was zur Emission von sehr langsamen Elektronen führt. Dieser Prozess ist auch bekannt als Frustrierte Rekombination und konnte experimentell nun das erste Mal nachgewiesen werden. Die aktuellen Ergebnisse könnten auch erklären, warum in vorherigen Experimenten mit intensiven Röntgen-Pulsen hohe Ladungszustände bis zu Xe26+ in Clustern beobachtet wurden, obwohl eine Vielzahl an Rekombinationsprozessen erwartet wird. Desweiteren bietet ein Experiment basierend auf einer Höheren Harmonischen Quelle in der Zukunft die Möglichkeit, Anrege-Abfrage Experimente in Clustern und anderen ausgedehnten Objekten durchzuführen mit einer zeitlichen Auflösung bis hinunter in den Attosekunden-Bereich.


Originalpublikation: Physical Review Letters, 


Vollständige Zitation:
Bernd Schütte, Mathias Arbeiter, Thomas Fennel, Marc J. J. Vrakking and Arnaud Rouzée, "Rare-gas clusters in intense extreme-ultraviolet pulses from a high-order harmonic source", Physical Review Letters 112, (2014)


Kontakt:
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI)
Max-Born-Str. 2A, 12489 Berlin

Dr. Bernd Schütte, 030 6392 1248
Prof. Marc J. J. Vrakking, 030 6392 1200
Dr. Arnaud Rouzée, 030 6392 1240


Das Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) gehört zum Forschungsverbund Berlin e.V. (FVB), einem Zusammenschluss von acht natur-, lebens- und umweltwissenschaftlichen Instituten in Berlin. In ihnen arbeiten mehr als 1.500 Mitarbeiter. Die vielfach ausgezeichneten Einrichtungen sind Mitglieder der Leibniz-Gemeinschaft. Entstanden ist der Forschungsverbund 1992 in einer einzigartigen historischen Situation aus der ehemaligen Akademie der Wissenschaften der DDR.

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.073003
http://www.mbi-berlin.de

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

Weitere Berichte zu: Elektronen Kurzzeitspektroskopie Lichtpuls

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht APEX wirft einen Blick ins Herz der Finsternis
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht Matrix-Theorie als Ursprung von Raumzeit und Kosmologie
23.05.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics