Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gegenwärtige und zukünftige Möglichkeiten der Erzeugung eines künstlichen 3D-Effektes

28.08.2014

Status Quo – Stereoskopie

Ein künstlicher 3D-Effekt lässt sich über verschiedene Methoden erzeugen. Dabei wird nach heutigem Stand sowohl im 3D-Kino und auch über 3D-Displays die Stereoskopie als das Mittel der Wahl genutzt (vgl. Holliman et al., 2011).

Es ist hinlänglich bekannt, dass es bei der Konfrontation mit stereoskopischen Inhalten im Vergleich zu herkömmlichen 2D-Inhalten vermehrt zu Beschwerden, wie etwa zur Wahrnehmung von unscharfen Bildern, Doppelbildern, ermüdeten Augen, Kopfschmerzen, Übelkeit oder Schwindelgefühl kommen kann (vgl. Urvoy et al., 2013).

Ein Grund hierfür wird in der unnatürlichen Stimulation des visuellen Systems und der damit einhergehenden gesteigerten Belastung des Selbigen gesehen. Dabei kommt es zu einer unnatürlichen Entkopplung der Ebenen auf welche der Betrachter fixiert bzw. fokussiert. Man spricht in diesem Zusammenhang vom sogenannten Vergenz-Akkommodation-Konflikt (kurz VAK, vgl. Hoffman et al., 2008; Shibata et al., 2011; Ukai & Howarth, 2008; Lambooij et al., 2009; Howarth, 2011).

Hersteller empfehlen die Nutzungsdauer grundsätzlich zu begrenzen und bei aufkommenden Beschwerden die Nutzung sofort einzustellen (vgl. Sony, 2010; Philips, 2013; Samsung, 2014). Damit die Nutzungsmöglichkeiten jedoch nicht eingeschränkt werden, ist es vielmehr erstrebenswert, nachhaltigere Lösungsmöglichkeiten zu suchen, die zur Steigerung des Betrachtungskomforts beitragen.

Alternative – Holographie

Eine vielversprechende Alternative zur Erzeugung eines künstlichen 3D-Effektes stellt die Holographie dar. Im Gegensatz zur Stereoskopie wird der Holographie die Generierung eines räumlichen Stimulus zugesichert, welcher das visuelle und kortikale System des Menschen auf eine natürlichere Art und Weise stimuliert.

Anders als bei der Wahrnehmung von stereoskopischen Inhalten, soll bei der holographischen Darstellung die Fokussierung und Fixation über das visuelle System auf den 3D-Effekt gerichtet sein, sodass die natürliche Kopplung der beiden Komponenten erfüllt sein soll und der VAK umgangen wird. Hierdurch sollen Beschwerden vermieden und ein höherer Betrachtungskomfort wie beim natürlichen räumlichen Sehen erzielt werden (vgl. Reichelt et al., 2010).

3D-Studie an der EAH Jena

Zur Prüfung dieser hypothetischen Annahmen wurde an der Ernst-Abbe-Fachhochschule Jena eine 3D-Studie mit einer Probandenzahl von N=54 durchgeführt, welche den visuellen Verarbeitungsprozess in Bezug auf den VAK sowohl an stereoskopischen, als auch an holographischen 3D-Displays quantitativ untersucht.

Die gewonnen Erkenntnisse lassen sich wie folgt zusammenfassen (vgl. Leicht, 2013):

1. Die visuelle Verarbeitung eines holographischen 3D-Effektes zeigt eine größere Nähe zu den Verarbeitungsprozessen eines natürlichen räumlichen Reizes als es bei der Stereoskopie der Fall ist, d.h. der Betrachter fokussiert den 3D-Effekt mitunter genauer, sodass der VAK reduziert wird.

2. Resultierend zeigen sich positive Auswirkungen auf die subjektive Wahrnehmung des holographischen 3D-Effektes. So traten bei der holographischen Darstellung bei weniger Probanden 3D-induzierte Beschwerden auf, als bei der stereoskopischen Darbietung.

3. Des Weiteren steht bei der Holographie ein größerer 3D-Bereich vor und hinter der Displayebene zur Verfügung, für welchen der 3D-Effekt beschwerdefrei dargestellt werden kann.

Fazit
Man muss folglich zu dem Schluss kommen, dass die Holographie großes Potential aufweist, einen natürlicheren und somit auch verträglicheren 3D-Effekt zu erzeugen. Bisher stellt die Holographie jedoch keine vollständig ausgereifte Technologie dar, sodass vorhandenen holographischen Displaysystemen das Prädikat der Marktreife noch nicht zugesprochen werden kann. Der technologische Ansatz der Holographie und dessen Weiterentwicklung kann ein wichtiger Schritt zur Optimierung der Mensch-Technologie-Interaktion sein, um den endgültigen Durchbruch von 3D voranzutreiben.

Das Literaturverzeichnis sowie weitere Informationen zu den Hintergründen 3D-induzierter Beschwerden und zu Lösungsansätzen lesen Sie unter: www.sehen-am-bildschirm.de

Kontakt:
M.Sc. Markus Leicht
Ernst-Abbe-Fachhochschule Jena
Fachbereich SciTec, Studiengang Augenoptik/Optometrie
Carl-Zeiss-Promenade 2
07745 Jena
E-Mail: Markus.Leicht@fh-jena.de

Weitere Informationen:

http://www.fh-jena.de

Sigrid Neef | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Stabile Quantenbits
08.12.2017 | Universität Konstanz

nachricht Neue Erscheinungsform magnetischer Monopole entdeckt
08.12.2017 | Institute of Science and Technology Austria

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Papstar entscheidet sich für tisoware

08.12.2017 | Unternehmensmeldung

Natürliches Radongas – zweithäufigste Ursache für Lungenkrebs

08.12.2017 | Unternehmensmeldung

„Spionieren“ der versteckten Geometrie komplexer Netzwerke mit Hilfe von Maschinenintelligenz

08.12.2017 | Biowissenschaften Chemie