Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gefühl für Licht

13.01.2014
Ein Team vom Labor für Attosekundenphysik hat einen vereinfachten Detektor für die Bestimmung der Wellenform von Laserpulsen entwickelt.

Der perfekten Kontrolle über Lichtwellen ist ein Team vom Labor für Attosekundenphysik (LAP) einen Schritt näher gekommen.


Kurzpulslaser am Max-Planck-Institut für Quantenoptik emittieren Lichtblitze, die nur wenige Femtosekunden dauern. Ihre Wellenform kann man nun mit einem neuen Detektor aus Glas kontrollieren. (Foto: Thorsten Naeser)

Die Forscher vom Max-Planck-Institut für Quantenoptik (MPQ), der Ludwig-Maximilians-Universität München (LMU) und der TU München haben einen Detektor entwickelt, der ihnen detailliert verrät, wie die Schwingungen in einem nur wenige Femtosekunden dauernden Lichtpuls geformt sind.

Anders als bisherige Messgeräte besteht dieser Detektor aus Glas und misst elektrische Ströme zwischen zwei angebrachten Elektroden, die das elektrische Feld des Lichtpulses auslöst, sobald dieser in das Glas eindringt.

Über die Charakteristika des Stromflusses schließen die Forscher darauf, wie das Wellenbild des Lichtpulses aussehen muss. Kennt man seine Wellenform im Detail, ist man in der Lage, noch tausend Mal kürzere Attosekunden-Lichtblitze stabil zu erzeugen und mit ihnen den Mikrokosmos zu erforschen (Nature Photonics, DOI: 10.1038/nphoton. 2013.348, 12. Januar 2014).

Moderne Kurzpuls-Laser erzeugen Lichtpulse, die nur wenige Femtosekunden dauern (eine Femtosekunden ist ein Millionstel einer milliardstel Sekunde). Die Schwingungen ihrer eigentlichen Lichtwellen sind oft nur 2,5 Femtosekunden lang, d.h. sie schlagen gerade ein- oder zweimal kräftig nach oben oder nach unten aus. Vor und hinter diesen Ausschlägen gibt es nur kleine Schwingungsausläufer, die aber schnell verebben. In der Laserphysik ist es vor allem wichtig zu wissen, wie die starken Schwingungen in den Pulsen beschaffen sind. Damit kennt man ihre elektromagnetischen Felder und kann die Pulse gezielt in der Ultrakurzzeitphysik weiter verwenden.

Ein Team um Prof. Ferenc Krausz und den Doktoranden Tim Paasch-Colberg hat nun Glas verwendet um die Form der Lichtwellen in einem Femtosekundenpuls exakt zu bestimmen. In Experimenten der letzten Jahre haben die Forscher festgestellt, dass starke Laserpulse, die auf Glas auftreffen, messbare elektrische Ströme in dem Material erzeugen (Nature, 3. Januar 2013). Nun haben die Physiker festgestellt, dass die Fließrichtung dieser elektrischen Ströme von der Form der eingestrahlten Lichtwellen abhängt, wenn ein Femtosekunden-Laserpuls verwendet wird.

Für die Eichung ihres neuen Glasdetektors koppelten die Forscher ihr System mit einem herkömmlichen Messgerät für die Bestimmung von Licht-Wellenformen. Dieses „klassische“ Messinstrument misst im Vakuum, wie Elektronen aus Edelgasatomen herausgeschleudert werden, nachdem der Laserpuls diese getroffen hatte. Der Apparat funktioniert allerdings nur im Vakuum. Durch den Abgleich der in dem Glas induzierten Elektronenströme mit den Daten des herkömmlichen Messgeräts, können die Forscher nun das Glas als neuen Detektor für die Lichtwellen-Formen einsetzen. Das neue Messgerät vereinfacht die Ultrakurzzeitphysik enorm, denn man muss es nicht im Vakuum betreiben. Zudem ist seine Messtechnik und Handhabung sehr viel unkomplizierter als bisherige Methoden zur Bestimmung von Wellenformen.

Kennt man die Wellenform der Femtosekunden-Laserpulse, erzeugt man mit ihnen wiederum sehr stabil und reproduzierbar die noch tausend Mal kürzeren Attosekunden-Lichtblitze. Die Beschaffenheit der Attosekunden-Lichtblitze hängt also ab von der Wellenform der Femtosekunden-Laserpulse. Mit Attosekunden-Lichtblitzen kann man Elektronen in Atomen oder Molekülen „fotografieren“. Um gute „Bilder“ zu erhalten braucht man unterschiedliche Lichtblitze, je nachdem welche Materie man untersucht.

Verlässliche Beobachtungen des Mikrokosmos mit Hilfe individuell beschaffener Attosekunden-Lichtblitze könnten künftig einfacher zu bewerkstelligen sein, da nun ihre Quelle, also die Wellenform der Laserpulse, mit dem neuen Detektor aus Glas einfacher zu kontrollieren ist. Thorsten Naeser

Abbildung: Kurzpulslaser am Max-Planck-Institut für Quantenoptik emittieren Lichtblitze, die nur wenige Femtosekunden dauern. Ihre Wellenform kann man nun mit einem neuen Detektor aus Glas kontrollieren. (Foto: Thorsten Naeser)

Originalveröffentlichung:

Tim Paasch-Colberg, Agustin Schiffrin, Nicholas Karpowicz, Stanislav Kruchinin, Özge Saglam, Sabine Keiber, Olga Razskazovskaya, Sascha Mühlbrandt, Ali Alnaser, Matthias Kübel, Vadym Apalkov, Daniel Gerster, Joachim Reichert, Tibor Wittmann, Johannes V. Barth, Mark I. Stockman, Ralph Ernstorfer, Vladislav S. Yakovlev, Reinhard Kienberger und Ferenc Krausz
Solid-state light-phase detector
Nature Photonics, DOI:10.1038/nphoton.2013.348, 12. Januar 2014
Weitere Informationen erhalten Sie von:
Tim Paasch-Colberg
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1, Garching
Telefon: +49 (0)89 / 32 905 -651
E-Mail: tim.paasch-colberg@mpq.mpg.de
Prof. Ferenc Krausz
Lehrstuhl für Experimentalphysik,
Ludwig-Maximilians-Universität München,
Labor für Attosekundenphysik
Direktor am Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 -600 / Fax: -649
E-Mail: ferenc.krausz@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1, Garching
Telefon: +49 (0)89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.attoworld.de/
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik