Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gefangen in Ruhelosigkeit

31.07.2015

Mit ultrakalten Atomen lässt sich ein neuer Materiezustand beobachten, in dem das System nicht ins thermische Gleichgewicht kommt.

Was passiert, wenn man kaltes und heißes Wasser mischt? Nach einer Weile ist das Wasser lauwarm – das System hat ein neues thermisches Gleichgewicht erreicht. Das geschieht nicht nur, wenn man kalte und heiße Flüssigkeiten mischt, also etwa kalte Milch in frisch gebrühten Kaffee kippt, es gilt für praktisch alle wechselwirkenden Systeme, die wir aus der Natur kennen: Auf lange Sicht nähern sie sich einem bestimmten thermisch ausgeglichenen Zustand mit einer dazugehörigen Temperatur an. In diesem Zustand verhält sich ein System in der Regel sehr klassisch, man kann es trotz Abermilliarden von Teilchen mit einfachen physikalischen Größen wie Temperatur, Dichte oder Druck beschreiben. Jeder ursprüngliche Quanteneffekt verflüchtigt sich im gesamten System und lässt sich normalerweise nicht mehr detektieren.


Schematische Darstellung des Experiments. Den im künstlichen Kristallgitter aus Licht angeordneten Atomen wird eine Dichtmodulation aufgeprägt. Es befinden sich so abwechselnd viele und wenige Atome auf benachbarten Gitterplätzen (1). Für einen Zustand ohne Unordnung wird die Dichtmodulation schon nach kurzer Zeit komplett ausgewaschen und verschwindet. Der Zustand bewegt sich ins thermische Gleichgewicht, bei dem jede Information über den Anfangszustand ausgelöscht wurde (2). Ganz anders verhält sich der Vielteilchen-lokalisierte Materiezustand: hier bleiben Reste der anfänglichen Dichtemodulation auch für lange Zeiten bestehen – ein Indiz dafür, dass sich das System nicht im thermischen Gleichgewicht befindet. Grafik: Michael Schreiber, LMU

Forscher der LMU und des Max-Planck-Instituts für Quantenoptik (MPQ) in Garching unter Leitung von Professor Immanuel Bloch und Dr. Ulrich Schneider haben nun erstmals einen neuen Materiezustand im Experiment erzeugt und analysiert, bei dem es sich anders verhält: eine sogenannte „Viel-Teilchen-Lokalisierung“ (engl.: many-body localization, MBL) von wechselwirkenden Fermionen. Trotz der Wechselwirkungen der Atome kommt das System nicht ins thermische Gleichgewicht. In diesem speziellen Zustand behält das System eine Erinnerung seines ursprünglichen Quantenzustands, und das sogar für sehr lange Zeit. „Unsere Arbeit ist wichtig für die Frage, wie eigentlich Temperatur, eine makroskopisch messbare Größe, in Materie entsteht und welche Umstände dazu führen, dass dies nicht passiert“, sagt Bloch. Nur Systeme im thermischen Gleichgewicht lassen sich auch über die Temperatur beschreiben. Die Ergebnisse veröffentlichten die Forscher in der aktuellen Ausgabe von Science Express online. Die Münchner Wissenschaftler arbeiteten eng mit der Theorie-Gruppe von Professor Ehud Altman vom Weizmann-Institut in Rehovot zusammen.

In Metallen können sich Teilchen, die Energie und eine elektrische Ladung tragen, frei bewegen und sich über das gesamte Material verteilen. Dies führt schließlich zu einem thermischen Gleichgewicht. Allerdings gibt es auch Mechanismen, die einen solchen Energietransport behindern. Bei einem Bandisolator beispielsweise, in dem die Elektronen im Material nicht frei beweglich sind, sondern fest an ihr jeweiliges Atom gebunden, sind bei jedem Atom des Kristalls sämtliche Energieniveaus und -hüllen komplett besetzt. Aufgrund des sogenannten Pauli-Prinzips, das besagt, dass sich zwei Elektronen nicht am gleichen Ort aufhalten können, wandern die Elektronen nicht in die bereits gefüllte Hülle eines Nachbaratoms. Quanten-Teilchen können ebenfalls örtlich eingeschränkt und festgehalten sein, wenn die perfekte kristalline Anordnung zum Beispiel durch Fehlstellen oder Fremdatome gestört ist. Dahinter steckt ein Mechanismus, der nach dem amerikanischen Nobelpreisträger Philip Warren Anderson benannt ist. In realen Festkörpern jedoch wirkt keiner dieser Mechanismen uneingeschränkt. In einem Bandisolator etwa wird immer ein Teil der Ladungsträger thermisch angeregt und ermöglicht so freie Bewegung. In einem ungeordneten Anderson-Isolator, in dem die Elektronen idealerweise ortsgebunden sind, werden diese aufgrund thermischer Schwingungen des Kristallgitters herumgestoßen, so dass sie sich schließlich über das ganze System verteilen können.

Eine ungelöste fundamentale Frage

Was aber passiert, wenn die Teilchen in einem festen Gitter gefangen sind, das nicht schwingt? Bleibt das gesamte System dann sogar bei höheren Temperaturen lokalisiert und kann daher kein thermisches Gleichgewicht erreichen? Das ist noch immer eine ungelöste fundamentale Frage der Festkörperphysik. Anderson formulierte seine Theorie der Lokalisierung ursprünglich für nicht-wechselwirkende Teilchen. Wenn aber Teilchen wechselwirken – was sie üblicherweise auch tun –, erhält ein Teilchen einen Stoß durch ein anderes Teilchen und sollte aufgrund der thermischen Bewegung seiner Nachbarteilchen nicht mehr ortsgebunden bleiben. Bemerkenswerterweise sagte ein amerikanisches Physikerteam 2005 auf theoretischer Basis genau das Gegenteil voraus: Unter speziellen Umständen könnte ein MBL-Materiezustand bis zu einer kritischen Temperatur stabil bleiben. Oberhalb dieser kritischen Temperatur oder bei zu geringen Fehlordnungen wären die Teilchen nicht mehr ortsgebunden und das System würde ein thermisches Gleichgewicht erreichen. Heute weiß man, dass dieser exotische Übergang eine klare Grenze darstellt zwischen einem makroskopischen System mit starkem Quanten-Verhalten und einem System, in dem Quanteneffekte im Spiel der Kräfte eliminiert werden.

Das Phänomen der Viel-Teilchen-Lokalisierung ist von fundamentalem Interesse, da es das einzige bekannte Beispiel in der Natur ist, wo ein Materiezustand aus vielen Teilchen nicht ins thermische Gleichgewicht kommt - und das in einer sehr robusten Art und Weise. Sie kennzeichnet gleichzeitig ein neues System, das sich nicht durch klassische Thermodynamik und statistische Physik beschreiben lässt; dafür bedürfe es neuer theoretischer und experimenteller Ansätze, sagt Immanuel Bloch. Gleichzeitig sind Viel-Teilchen-Lokalisierungen von Interesse für mögliche Anwendungen bei der Entwicklung von Quantencomputern, denn sie sind besonders immun gegen Störungen. Mit ihr lassen sich Quanteninformationen möglicherweise sicher speichern und davor schützen, dass sie ihre Kohärenz verlieren, sie bewahren ihren Sinnzusammenhang. Aber trotz seiner grundlegenden Bedeutung fehlte bis heute eine experimentelle Bestätigung und Beobachtung des Phänomens.

Wie ein Raster aus winzigen Lichtpunkten

Die Forschergruppen aus München und Rehovot konnten nun für ultrakalte Kalium-Atome, die in einem künstlichen Kristallgitter aus Licht eingesperrt waren, solche Viel-Teilchen-Lokaliserungs-Zustände beobachten. Dieses sogenannte optische Gitter erzeugten die Forscher mit mehreren sich überlagernden, interferierenden Laserstrahlen; es funktioniert wie ein Raster aus winzigen Lichtpunkten, in denen die Atome gefangen sind. „Durch unsere Laser können wir das Potenzialgebirge, in dem sich die Atome bewegen, genau kontrollieren“, sagt Quantenphysiker Bloch. „Damit können wir im Experiment sowohl den Grad der Unordnung als auch die Stärke der Wechselwirkung zwischen den Atomen so einstellen, wie wir wollen.“

Das Team testete nun, ob die wechselwirkenden Atome das gesamte System in ein thermisches Gleichgewicht bringen. Dazu verteilten sie die Atome unterschiedlich dicht in ihrem optischen Gitter, mal waren in einem Gitterplatz mehr, mal weniger Kaliumatome. Diese künstlich aufgeprägte Dichtewelle aus Atomen ist ähnlich einer Welle, die auch Höhen und Tiefen hat. Die Forscher beobachten dann, ob sich die Dichtemodulation im Lauf der Zeit verändert und sich die Atome gleichmäßig verteilen. Sollten die Wechselwirkungen dazu führen, dass sich ein thermisches Gleichgewicht einstellt, müsste die Dichtemodulation schnell verschwinden. Denn ein thermisches Gleichgewicht trägt keine Erinnerung seines Ausgangszustands in sich. Umgekehrt weist eine dauerhafte Dichtemodulation auf eine Viel-Teilchen-Lokalisierung hin. Die Forscher veränderten in den Experimenten systematisch den Grad der Unordnung und die Stärke der Wechselwirkung und legten so nach und nach die Grenzen der Lokalisierungs-Phase fest.

Das Weizmann-Team stützte die experimentellen Daten mit theoretischen Berechnungen und Simulationen, ein komplexes Unterfangen. Sind nämlich Wechselwirkungen zwischen Atomen vorhanden, wird das Problem überaus kompliziert, denn dann müssen auch gemeinsame Quantenbewegungen aller Teilchen berücksichtigt werden. Ein Nicht-Wechselwirkungs-Problem lässt sich auf jedem Heimrechner lösen, aber schon für lediglich 40 Teilchen, die miteinander in Wechselwirkung stehen, mussten die Weizmann-Theoretiker leistungsstarke Supercomputer nutzen, wollten sie deren Verhalten auch nur für kurze Zeitspannen simulieren.

„Wir waren erstaunt, dass wir den neuen Materiezustand tatsächlich beobachten können“, sagt Michael Schreiber, Erstautor der Arbeit. „Obwohl er eine starke Quanten-Charakteristik hat, ist er doch stabiler als jeder andere typische Viel-Teilchen-Zustand, den wir in der Vergangenheit untersucht haben.“

Originalveröffentlichung:
Michael Schreiber, Sean S. Hodgman, Pranjal Bordia, Henrik P. Lüschen, Mark H. Fischer, Ronen Vosk, Ehud Altman, Ulrich Schneider, Immanuel Bloch
Observation of many-body localization of interacting fermions in a quasi-random optical lattice
Science Express, 31 July 2015

Kontakt:

Prof. Dr. Immanuel Bloch
Lehrstuhl für Quantenoptik, LMU München
Schellingstr. 4, 80799 München
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 -138
E-Mail: immanuel.bloch@mpq.mpg.de

Dr. Ulrich Schneider
LMU München
Telefon: +49 (0)89 / 21 80 - 6129
E-Mail: ulrich.schneider@physik.uni-muenchen.de

Dr. Olivia Meyer-Streng
Presse-und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching b. München
Telefon: +49 (0)89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MAIUS-1 – erste Experimente mit ultrakalten Atomen im All
24.01.2017 | Leibniz Universität Hannover

nachricht European XFEL: Forscher können erste Vorschläge für Experimente einreichen
24.01.2017 | European XFEL GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie