Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine „fühlende Haut“ für die Infrastruktur

06.07.2011
Moderne Infrastruktur-Bauwerke, wie Brücken oder Staudämme, sind ständigem Verschleiß ausgesetzt.

Mögliche Schädigungsmechanismen zu erkennen sowie entstehende Schäden frühzeitig zu identifizieren und zu beseitigen, erfordert großen technischen, organisatorischen und finanziellen Aufwand. Um ihn zu verringern, arbeiten Physiker und Ingenieure aus Potsdam und Boston gemeinsam an der Entwicklung eines Sensorkonzeptes für Infrastruktur-Bauwerke.

Brücken, Autobahnen, Staudämme und Versorgungseinrichtungen gehören zu den teuersten Infrastruktureinrichtungen der modernen Gesellschaft. Sie sind permanenter Beanspruchung durch Verkehr und Umwelt, aber auch Gefahren, wie Erdbeben und Unfällen, ausgesetzt.

Die Folgen der kontinuierlichen und kurzzeitigen Beanspruchungen sind wachsende Schädigungen. Bei Brücken beispielsweise kann dies zur Verringerung der Traglast und der sicheren zulässigen Passiergeschwindigkeit führen. Folgen der Schäden sind unter anderem Sperrungen und aufwendige Sanierungen, wovon Verkehrsteilnehmer und Steuerzahler betroffen sind.

Schäden und Wartungsstau im deutschen Autobahnnetz haben zum Beispiel dazu geführt, dass 2,3 Prozent der Autobahnbrücken so weit geschädigt sind, dass ihr Zustand zu Verkehrsbeeinträchtigungen führt. Die regelmäßige Wartung erfordert einen großen technischen, organisatorischen und finanziellen Aufwand.

An dieser Stelle setzt ein Forschungsprojekt an, in dem Physiker der Universität Potsdam und Ingenieure des Massachusetts Institute of Technology (MIT) zusammen arbeiten. Die Potsdamer Forscher Matthias Kollosche und Dr. Guggi Kofod aus dem Lehrstuhl Angewandete Physik kondensierter Materie von Prof. Dr. Reimund Gerhard sowie die Ingenieure Simon Laflamme und Prof. Dr. Jerome Connor vom Department of Civil and Environmental Engineering des MIT arbeiten an der Entwicklung eines Sensorkonzeptes für Infrastruktur-Bauwerke.

Die neuen Sensorsysteme, die auf dem Zusammenspiel vieler, mechanisch sehr flexibler und günstig zu produzierender Polymerkondensatoren beruhen, können flächendeckend auf Brücken und Staudämmen befestigt werden. Durch die unterschiedliche mechanische Deformation der Sensoren werden Schäden und Veränderungen direkt messbar. Das zum Patent angemeldete Polymersensorkonzept für Infrastrukturanwendungen ermöglicht es erstmals, kontinuierlich die Alterung zu erfassen und auftretende Veränderungen, wie Risse, schnell zu lokalisieren. Dieses Sensorkonzept agiert wie eine „fühlende Haut“, die über die kritischen Strukturen gespannt werden kann.

Die Doktoranden Kollosche und Laflamme haben das Konzept im Potsdamer Labor und am MIT mit kommerziell erhältlichen Materialien praktisch erprobt. Sie konnten mit den am Institut für Physik und Astronomie der Universität Posdam erforschten Methoden zur Einstellung von elektrischen und mechanischen Eigenschaften von Polymeren ein maßgeschneidertes Material entwerfen und herstellen, welches sich bei der praktischen Umsetzung des Konzepts bewährt hat. Die Ergebnisse der Zusammenarbeit wurden bereits auf einer Konferenz in Tokio vorgetragen und in zwei Veröffentlichungen publiziert. Die Forscher beabsichtigen in einem weiteren Schritt die praktische und großflächige Erprobung des Konzepts außerhalb des Labors.

Hinweis an die Redaktionen:

Kontakt: Matthias Kollosche, Telefon: 0331/977-5001,
E-Mail: matthias.kollosche@uni-potsdam.de

Sylvia Prietz | idw
Weitere Informationen:
http://www.uni-potsdam.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der überraschend schnelle Fall des Felix Baumgartner
14.12.2017 | Technische Universität München

nachricht Eine blühende Sternentstehungsregion
14.12.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was für IT-Manager jetzt wichtig ist

14.12.2017 | Unternehmensmeldung

30 Baufritz-Läufer beim 25. Erkheimer Nikolaus-Straßenlauf

14.12.2017 | Unternehmensmeldung

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungsnachrichten