Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Friedensschluss im Festkörper

11.06.2010
Magnetismus und Supraleitung können gleichzeitig auf engstem Raum auftreten

Feindschaften kennt auch die Physik. Doch manchmal lassen sich unter der oberflächlichen Antipathie tiefe Gemeinsamkeiten entdecken. Magnetismus und Supraleitung - die Fähigkeit eines Materials, Strom verlustfrei zu leiten - etwa galten Physikern lange als erbitterte Gegner: Wo der eine sich breit macht, hält die andere es nicht aus und vice versa. Ein Team um Forscher des Max-Planck-Instituts für Chemische Physik fester Stoffe präsentieren jetzt aber experimentelle Belege, dass beide Phänomene sehr wohl auf kleinstem Raum nebeneinander existieren können. Mehr noch: Vermutlich beruht eine bestimmte Form der Supraleitung sogar auf magnetischen Wechselwirkungen. Die Erkenntnisse könnten zur Lösung der Frage beitragen, warum manche Stoffe schon bei relativ hohen Temperaturen ihren elektrischen Widerstand aufgeben. Das zu verstehen ist Voraussetzung, um Stoffe zu identifizieren, die auch in alltäglichen Anwendungen Strom verlustfrei leiten können. (Proc. Natl. Acad. Sci. USA 107 (2010) 9537-9540)


Ein Ort der Versöhnung: In einer Variante dieses Materials, die neben Cer, Kobalt und Indium eine geringe Menge Cadmium enthält, treten Magnetismus und Supraleitung gleichzeitig auf. Da die Struktur aus Schichten besteht, hängen beide Eigenschaften auch von der Richtung ab, in der sie gemessen werden. Bild: MPI für chemische Physik fester Stoffe

Wenn zwei das gleiche tun, ist das noch lange nicht dasselbe. Das gilt auch, wenn Stoffe ihren elektrischen Widerstand verlieren. Blei etwa wird bei etwa minus 266 Grad Celsius zum Supraleiter, die beste Kupferoxid-Keramik bei gut 110 Grad unter Null. Trotz dieser immer noch ziemlich frostigen Übergangstemperatur firmieren letztere als "Hochtemperatur"-Supraleiter.

Während Physiker jedoch sehr gut verstehen, was den Widerstand in klassischen metallischen Supraleitern wie Blei bricht, gibt ihnen die Supraleitung in der Keramik noch immer Rätsel auf. Dabei wäre es gerade aus technischer Sicht sehr interessant, die Supraleitung in jenen Materialien zu verstehen, die Strom bei relativ hoher Temperatur verlustfrei leiten. Denn sobald sich diese keramische "Hochtemperatur"-Supraleitung erklären lässt, wird auch die Suche nach Materialien leichter, die selbst bei Temperaturen eines mitteleuropäischen Sommertages noch keinen Widerstand leisten.

Möglicherweise helfen die Ergebnisse, die ein internationales Team um Forscher des Max-Planck-Instituts für Chemische Physik fester Stoffe in Dresden jetzt präsentieren, die Supraleitung in Kupferoxid-Keramiken zu erklären. "Wir verfolgen die These, dass magnetische Wechselwirkungen für die keramische Supraleitung verantwortlich sind", sagt Steffen Wirth, der dafür am Dresdner Max-Planck-Institut Belege sucht und findet. Dabei galt in der Physik lange als ausgemacht, dass Magnetismus und Supraleitung sich so wenig vertragen wie Schnee und Sommer. Wirth hat mit seinen Kollegen jetzt aber starke Hinweise gefunden, dass Magnetismus und Supraleitung in einer Substanz gleichzeitig auf engstem Raum auftreten können.

Ein Tieftemperatur-Supraleiter mit ungewöhnlichen Eigenschaften

Die Forscher konzentrierten sich auf eine Legierung aus Cer, Kobalt, Indium und einer Spur Cadmium, die sie gemeinsam mit einer internationalen Gruppe herstellen, die sich besonders gut auf die Züchtung diffiziler Kristalle versteht. "Diese Verbindung gehört zwar zu den Tieftemperatur-Supraleitern, erklärt Steffen Wirth: "Wir sind aber überzeugt, dass seine Supraleitung nach einem Mechanismus zustande kommt, der auch in keramischen Supraleitern greifen könnte."

Sie beobachteten, wie sich unterhalb von minus 270,7 Grad Celsius eine antiferromagnetische Ordnung bildet: Allmählich ordnen sich die magnetischen Momente bestimmter Elektronen so, dass sie wie winzige Stabmagneten abwechselnd mit Nord- und Südpolen aneinander liegen. Bei ziemlich genau minus 271,4 Grad Celsius bricht dann der Widerstand der metallischen Legierung zusammen. Dann haben sich rund 60 Prozent aller magnetischen Momente antiparallel ausgerichtet - und das bleibt auch so. "Bei tieferen Temperaturen verstärkt sich die antiferromagnetische Ordnung zwar nicht mehr", sagt Steffen Wirth: "Aber sie bricht auch nicht zusammen, wie man das lange erwartet hatte."

Diese Erkenntnis haben die Forscher gewonnen, indem sie eine Probe der erwähnten Legierung mit drei Messmethoden sezierten: Zusammen mit Forschern des Helmholtz-Zentrums Berlin haben sie mit einem Neutronenstrahl die magnetische Ordnung der Probe ertastet. Neutronen besitzen selbst ein magnetisches Moment und werden daher je nach der Orientierung der magnetischen Momente in einem Stoff anders gestreut. Messungen der elektrischen Leitfähigkeit verrieten ihnen, wann die Supraleitung einsetzt. Miteinander kombiniert liefern die beiden Untersuchungen ein Phasendiagramm: dieses Bild zeigt, bei welchen Temperaturen, bei welchen äußeren Magnetfeldern oder auch chemischen Zusammensetzungen in einem Stoff ein Phasenübergang stattfindet, wann das Material also seine physikalischen Eigenschaften ändert und zum Beispiel supraleitend wird.

Magnetismus und Supraleitung essen aus demselben Topf

"Bislang gibt es keine Methode, die gleichzeitig die magnetische Ordnung und elektrische Transporteigenschaften bestimmen kann", sagt Steffen Wirth: "Unsere Messungen liefern aber ein sehr umfassendes Bild, auch weil die Ergebnisse der verschiedenen Methoden perfekt zusammen passen." Bestätigt haben die Physiker das Bild der Neutronenstreuung und Leitfähigkeitsexperimente durch Untersuchungen der Wärmekapazität: Sie haben gemessen, wie viel Wärme, sprich Energie, das Material aufnehmen kann, ehe sich seine Temperatur um ein Grad Celsius erhöht. Diese Aufnahmekapazität variiert immer dann, wenn sich auch andere physikalische Eigenschaften des Materials ändern.

Dass sich Magnetismus und Supraleitung miteinander aussöhnen, spricht für das Bild, das sich die Dresdener Forscher von der keramischen "Hochtemperatur"-Supraleitung machen: "Wir sind überzeugt, dass Magnetismus und Supraleitung aus demselben Topf essen: Beide speisen sich aus den magnetischen Fluktuationen." Mit den magnetischen Fluktuationen ändert sich ständig die magnetische Ordnung in dem Kristall. Unterm Strich richtet sich aber immer derselbe Anteil magnetischer Momente so aus, wie es das Phasendiagramm vorschreibt, also zum Beispiel zu 60 Prozent antiferromagnetisch.

Getragen werden die magnetischen Fluktuationen von einer bestimmten Sorte von Elektronen. Sie befinden sich genau dort im Atom, wo sie sowohl den Magnetismus als auch die Supraleitung bewirken können - und bilden quasi die Zutaten in dem Topf, aus dem sich Magnetismus und Supraleitung bedienen.

Offenbar verkuppeln also magnetische Kräfte jeweils zwei Elektronen zu einem Cooperpaar, davon zumindest gehen die Max-Planck-Physiker in ihrem Modell der unkonventionellen Supraleitung aus. Verbandelt in einem Cooper-Paar spüren die Elektronen den Widerstand nicht mehr, den ihnen das Kristallgitter entgegensetzt. "Dafür, dass die Supraleitung auf magnetischen Wechselwirkungen beruht, haben wir noch keine herzhaften Beweis, aber gute Indizien", so Wirth: "Jedenfalls unterstreichen unsere Ergebnisse, dass die gängigen Theorien, mit denen wir bislang die elektronischen Eigenschaften eines Materials beschreiben, für unsere Proben und für die keramischen Supraleiter nicht gelten." Nun müssen theoretische Physiker die Theorie zu Supraleitern also erweitern, damit sie sich auch mit den Ergebnissen der aktuellen Experimente vertragen.

Originalveröffentlichung:

Sunil Nair, Oliver Stockert, Ulrike Witte, Michael Nicklas, Roland Schedler, Klaus Kiefer, Joe D. Thompson, Andrea D. Bianchi, Zachary Fisk, Steffen Wirth, and Frank Steglich
Magnetism and superconductivity driven by identical 4f states in a heavy-fermion metal

PNAS, 25. Mai 2010; DOI: 10.1073/pnas.1004958107

Weitere Informationen erhalten Sie von:

PD Dr. Steffen Wirth
Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden
Tel.: 0351 4646-3229
E-Mail: wirth@cpfs.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise