Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher nutzen erstmalig Skyrmionen zum Speichern von Daten

09.08.2013
Auf der Titelseite von "Science": Magnetische Nano-Knoten als Datenspeicher

Physikern der Universität Hamburg ist es erstmalig gelungen einzelne magnetische Skyrmionen – eine Art magnetischer Knoten – individuell zu schreiben und zu löschen.


Ein Skyrmion kann man sich als einen magnetischen zweidimensionalen Knoten vorstellen, bei dem sich die magnetischen Momente mit einem einheitlichen Drehsinn innerhalb einer Ebene um 360° drehen. Das Bild zeigt die Daten einer spinpolarisierten Rastertunnelmikroskopie-Messung hinterlegt mit der Magnetisierung der Probe.

Arbeitsgruppe Prof. R. Wiesen-danger, Universität Hamburg

Solche wirbelförmigen magnetischen Strukturen besitzen außergewöhnliche Eigenschaften und sind vielversprechende Kandidaten für zukünftige Datenspeicher. Skyrmionen sind bereits seit einigen Jahren Gegenstand aktiver Forschung. Doch bisher wurden diese Strukturen lediglich untersucht, eine gezielte Manipulation wurde nicht realisiert.

Genau dies ist den Hamburger Forschern aus der Gruppe um Prof. Roland Wiesendanger jetzt mit Hilfe eines Rastertunnelmikroskops gelungen: Wie die Zeitschrift Science in ihrer Online-Ausgabe vom 9. August 2013 berichtet, wurde von den Wissenschaftlern die Erzeugung und die Auslöschung einzelner Skyrmionen demonstriert, was dem „Speichern“ und „Löschen“ von Informationen auf einem Datenträger entspricht. Durch diese Arbeit wird eines der fundamentalen technischen Probleme gelöst, um Skyrmionen zukünftig in der Informationstechnologie nutzen zu können.

Mit dem Streben nach immer kompakteren elektronischen Geräten mit gleichzeitig immer höherer Speicherdichte werden herkömmliche magnetische Speichertechnologien bald an ihre physikalischen Grenzen gelangen. In den bisher verwendeten konventionellen Speichern bestehen die magnetischen Bits, ähnlich wie klassische Stabmagnete, aus vielen Atomen mit einer parallelen Anordnung ihrer magnetischen Momente und können entsprechend ihrer magnetischen Ausrichtung die für die Informationstechnologie wichtigen Werte „1“ und „0“ darstellen. Durch die stetige Miniaturisierung findet aufgrund des magnetischen Streufeldes eine zunehmend stärkere Wechselwirkung zwischen benachbarten Bits statt, was zu Datenverlust führen kann. Zudem sind kleine magnetische Bits gegenüber thermischen Fluktuationen nicht besonders stabil, was auch als superparamagnetisches Limit bezeichnet wird.

Ein Ausweg aus dieser technologischen Sackgasse könnte die Verwendung „robusterer“ magnetischer Strukturen wie z.B. Skyrmionen sein. Diese Strukturen kann man sich bildlich als einen zweidimensionalen Knoten vorstellen bei dem sich die magnetischen Momente mit einem einheitlichen Drehsinn innerhalb einer Ebene um 360° drehen (siehe Abb. 1). Diese magnetischen Knoten haben Teilchencharakter und man kann ihnen eine Art Ladung – die topologische Ladung – zuordnen, womit es möglich ist, mit einem Skyrmion den Bit-Zustand „1“ (es gibt ein Skyrmion) und „0“ (es gibt kein Skyrmion) darzustellen.

Durch die geschickte Wahl von Temperatur und äußerem Magnetfeld ist nun den Hamburger Wissenschaftlern aus der Gruppe von Prof. Roland Wiesendanger erstmalig die Herstellung und Manipulation einzelner Skyrmionen gelungen. Dazu verwendeten die Experimentalphysiker einen zwei Atomlagen dicken Film aus Palladium und Eisen auf einem Iridium-Kristall.

Bringt man diese Probe in ein magnetisches Feld, kann man mit Hilfe eines spinpolarisierten Rastertunnelmikroskops einzelne und räumlich feste Skyrmionen mit einer Größe von wenigen Nanometern beobachten. Diese können mit einem kleinen elektrischen Strom aus der Mikroskopspitze geschrieben und gelöscht werden. Bei der Erzeugung eines Skyrmions werden die sonst parallel ausgerichteten magnetischen Momente so verwirbelt, dass sich eine Art zweidimensionaler Knoten bildet, beim Löschen wird der Knoten wieder aufgelöst.

„Endlich haben wir ein magnetisches System gefunden, in dem wir lokal zwischen gewöhnlicher ferromagnetischer Ordnung und komplexer Spinanordnung hin und herschalten können.“, begeistert sich Dr. Kirsten von Bergmann, langjähriges Mitglied der Arbeitsgruppe Wiesendanger.

Wie in der aktuellen Ausgabe der Zeitschrift Science veröffentlicht, konnten auf einem Probenausschnitt vier Skyrmionen gezielt erzeugt und aufgelöst werden (siehe Abb. 1). „Die Idee vom sprichwörtlichen Knoten im Taschentuch, um sich etwas zu merken, haben wir auf die Speichertechnologie übertragen und können Daten in zweidimensionalen magnetischen Knoten speichern.“, erklärt der Doktorand Niklas Romming.

Ob und wann Skyrmionen als Datenspeicher in unseren Computern, Tablet-PCs und Smartphones eingesetzt werden können, lässt sich heute noch nicht sagen. Das experimentell realisierte Schreiben und Löschen von Skyrmionen hat aber die Machbarkeit dieser Technologie bewiesen und somit wurde mit dieser Arbeit eine wichtige Hürde bei der technologischen Umsetzung genommen.

Rückfragen:
Dipl.-Chem. Heiko Fuchs
Sonderforschungsbereich 668
Institut für Angewandte Physik
Universität Hamburg
Jungiusstr. 9a
20355 Hamburg
Tel: (0 40) / 42838 - 69 59
E-Mail: hfuchs@physnet.uni-hamburg.de

Heiko Fuchs | idw
Weitere Informationen:
http://www.sfb668.de
http://www.nanocience.de
http://www.nanoscience.de/furore

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erforschung von Elementarteilchen in Materialien
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau