Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher aus den USA und Dresden entwickeln Breitband-Detektor aus Graphen

27.10.2015

Wissenschaftler des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) haben zusammen mit Kollegen aus den USA und Deutschland einen neuen optischen Detektor aus Graphen entwickelt, der extrem schnell auf einfallendes Licht unterschiedlichster Wellenlängen reagiert und schon bei Zimmertemperatur funktioniert. Erstmals kann somit ein einzelner Detektor den Spektralbereich von sichtbarem Licht über die Infrarot-Strahlung bis hin zur Terahertz-Strahlung überwachen. Die HZDR-Wissenschaftler nutzen den neuen Graphen-Detektor bereits zur exakten Synchronisation von Laser-Systemen.

Eine kleine Flocke Graphen auf Siliziumcarbid und eine futuristisch anmutende Antenne – fertig ist der neue Graphen-Detektor. Diese vergleichsweise simple und auch preiswerte Konstruktion kann erstmals als einzelner Detektor den enorm großen Spektralbereich vom sichtbaren Licht bis zur Terahertz-Strahlung abdecken.


Die äußere Antenne des Detektors fängt langwellige Infrarot- und Terahertz-Strahlung ein und leitet sie zu einer Graphen-Flocke, die sich in der Mitte der Struktur befindet.

M. Mittendorff

„Im Gegensatz zu anderen Halbleitern, wie Silizium oder Galliumarsenid, kann Graphen Licht von sehr unterschiedlicher Photonenenergie aufnehmen und in elektrische Signale umwandeln. Wir mussten hier nur noch mit einer breitbandigen Antenne und dem passenden Substrat die idealen Rahmenbedingungen schaffen“, erklärt Dr. Stephan Winnerl, Physiker am Institut für Ionenstrahlphysik und Materialforschung des HZDR.

Bereits 2013 hatte der damalige HZDR-Doktorand Martin Mittendorff den Vorgänger des Graphen-Detektors entwickelt. Als Postdoc an der University of Maryland hat er ihn nun zusammen mit seinen Dresdner Kollegen sowie Forschern aus Marburg, Regensburg und Darmstadt perfektioniert. Das Funktionsprinzip:

Die antennengekoppelte Graphen-Flocke absorbiert die Strahlung, wodurch die Energie der Photonen auf die Elektronen im Graphen übertragen wird. Solche „heißen Elektronen“ erhöhen den elektrischen Widerstand des Detektors und führen so zu schnellen elektrischen Signalen. In nur 40 Pikosekunden – das sind Billionstel einer Sekunde – kann der Detektor einfallendes Licht registrieren.

Großer Spektralbereich durch Siliziumcarbid-Substrat

Besonders die Auswahl des Substrats war jetzt ein entscheidender Schritt zur Verbesserung des kleinen Lichtfängers, wie Stephan Winnerl erläutert: „Zuvor verwendete Halbleiter-Substrate haben stets einige Wellenlängen absorbiert, Siliziumcarbid verhält sich hingegen im gesamten Spektralbereich passiv.“ Hinzu kommt eine Antenne, die wie ein Trichter wirkt und langwellige Infrarot- und Terahertz-Strahlung einfängt.

Die Wissenschaftler konnten so den abgedeckten Spektralbereich im Vergleich zum Vorgänger fast um den Faktor 90 steigern. Die kürzeste messbare Wellenlänge ist damit 1000 Mal kleiner als die längste. Zum Vergleich: Rot, das langwelligste Licht, das das menschliche Auge wahrnehmen kann, hat lediglich die doppelte Wellenlänge von Violett, dem kurzwelligsten sichtbaren Licht.

Am HZDR wird dieser optische Universaldetektor bereits genutzt, um die beiden Freie-Elektronen-Laser am ELBE-Zentrum für Hochleistungs-Strahlenquellen exakt mit anderen Lasern zu synchronisieren. Besonders wichtig ist diese Justierung für sogenannte Pump-Probe-Experimente: Dabei regen Forscher ein Material mit einem Laser an („pump“) und nutzen anschließend einen zweiten Laser mit anderer Wellenlänge zur Messung („probe“).

Für solche Untersuchungen müssen die Pulse der Laser exakt aufeinander abgestimmt werden. Dafür setzen die Wissenschaftler den Graphen-Detektor wie eine Stoppuhr ein: Er teilt ihnen mit, wann die Laserpulse ins Ziel kommen und durch seine große Bandbreite wird ein Wechsel des Detektors als potentielle Fehlerquelle vermieden. Ein weiterer Vorteil ist, dass alle Messungen bei Zimmertemperatur ablaufen können und auf die aufwendige und kostspielige Stickstoff- oder Heliumkühlung anderer Detektoren verzichtet werden kann.

Publikation:
M. Mittendorff, J. Kamann, J. Eroms, D. Weiss, C. Drexler, S. D. Ganichev, J. Kerbusch, A. Erbe, R. J. Suess, T. E. Murphy, S. Chatterjee, K. Kolata, J. Ohser, J. C. König-Otto, H. Schneider, M. Helm, S. Winnerl: “Universal ultrafast detector for short optical pulses based on graphene”, in Optics Express 23 (2015) 28728-28735 (DOI: 10.1364/OE.23.028728)

Weitere Informationen:
Dr. Stephan Winnerl
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel. +49 351 260-3522
E-Mail: s.winnerl@hzdr.de

Medienkontakt:
Dr. Christine Bohnet | Pressesprecherin
Tel. +49 351 260-2450 | E-Mail: c.bohnet@hzdr.de

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Das HZDR ist Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte (Dresden, Leipzig, Freiberg und Grenoble) und beschäftigt rund 1.100 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 150 Doktoranden.

Weitere Informationen:

http://www.hzdr.de/presse/graphen-detektor

Simon Schmitt | Helmholtz-Zentrum Dresden-Rossendorf

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie