Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher aus den USA und Dresden entwickeln Breitband-Detektor aus Graphen

27.10.2015

Wissenschaftler des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) haben zusammen mit Kollegen aus den USA und Deutschland einen neuen optischen Detektor aus Graphen entwickelt, der extrem schnell auf einfallendes Licht unterschiedlichster Wellenlängen reagiert und schon bei Zimmertemperatur funktioniert. Erstmals kann somit ein einzelner Detektor den Spektralbereich von sichtbarem Licht über die Infrarot-Strahlung bis hin zur Terahertz-Strahlung überwachen. Die HZDR-Wissenschaftler nutzen den neuen Graphen-Detektor bereits zur exakten Synchronisation von Laser-Systemen.

Eine kleine Flocke Graphen auf Siliziumcarbid und eine futuristisch anmutende Antenne – fertig ist der neue Graphen-Detektor. Diese vergleichsweise simple und auch preiswerte Konstruktion kann erstmals als einzelner Detektor den enorm großen Spektralbereich vom sichtbaren Licht bis zur Terahertz-Strahlung abdecken.


Die äußere Antenne des Detektors fängt langwellige Infrarot- und Terahertz-Strahlung ein und leitet sie zu einer Graphen-Flocke, die sich in der Mitte der Struktur befindet.

M. Mittendorff

„Im Gegensatz zu anderen Halbleitern, wie Silizium oder Galliumarsenid, kann Graphen Licht von sehr unterschiedlicher Photonenenergie aufnehmen und in elektrische Signale umwandeln. Wir mussten hier nur noch mit einer breitbandigen Antenne und dem passenden Substrat die idealen Rahmenbedingungen schaffen“, erklärt Dr. Stephan Winnerl, Physiker am Institut für Ionenstrahlphysik und Materialforschung des HZDR.

Bereits 2013 hatte der damalige HZDR-Doktorand Martin Mittendorff den Vorgänger des Graphen-Detektors entwickelt. Als Postdoc an der University of Maryland hat er ihn nun zusammen mit seinen Dresdner Kollegen sowie Forschern aus Marburg, Regensburg und Darmstadt perfektioniert. Das Funktionsprinzip:

Die antennengekoppelte Graphen-Flocke absorbiert die Strahlung, wodurch die Energie der Photonen auf die Elektronen im Graphen übertragen wird. Solche „heißen Elektronen“ erhöhen den elektrischen Widerstand des Detektors und führen so zu schnellen elektrischen Signalen. In nur 40 Pikosekunden – das sind Billionstel einer Sekunde – kann der Detektor einfallendes Licht registrieren.

Großer Spektralbereich durch Siliziumcarbid-Substrat

Besonders die Auswahl des Substrats war jetzt ein entscheidender Schritt zur Verbesserung des kleinen Lichtfängers, wie Stephan Winnerl erläutert: „Zuvor verwendete Halbleiter-Substrate haben stets einige Wellenlängen absorbiert, Siliziumcarbid verhält sich hingegen im gesamten Spektralbereich passiv.“ Hinzu kommt eine Antenne, die wie ein Trichter wirkt und langwellige Infrarot- und Terahertz-Strahlung einfängt.

Die Wissenschaftler konnten so den abgedeckten Spektralbereich im Vergleich zum Vorgänger fast um den Faktor 90 steigern. Die kürzeste messbare Wellenlänge ist damit 1000 Mal kleiner als die längste. Zum Vergleich: Rot, das langwelligste Licht, das das menschliche Auge wahrnehmen kann, hat lediglich die doppelte Wellenlänge von Violett, dem kurzwelligsten sichtbaren Licht.

Am HZDR wird dieser optische Universaldetektor bereits genutzt, um die beiden Freie-Elektronen-Laser am ELBE-Zentrum für Hochleistungs-Strahlenquellen exakt mit anderen Lasern zu synchronisieren. Besonders wichtig ist diese Justierung für sogenannte Pump-Probe-Experimente: Dabei regen Forscher ein Material mit einem Laser an („pump“) und nutzen anschließend einen zweiten Laser mit anderer Wellenlänge zur Messung („probe“).

Für solche Untersuchungen müssen die Pulse der Laser exakt aufeinander abgestimmt werden. Dafür setzen die Wissenschaftler den Graphen-Detektor wie eine Stoppuhr ein: Er teilt ihnen mit, wann die Laserpulse ins Ziel kommen und durch seine große Bandbreite wird ein Wechsel des Detektors als potentielle Fehlerquelle vermieden. Ein weiterer Vorteil ist, dass alle Messungen bei Zimmertemperatur ablaufen können und auf die aufwendige und kostspielige Stickstoff- oder Heliumkühlung anderer Detektoren verzichtet werden kann.

Publikation:
M. Mittendorff, J. Kamann, J. Eroms, D. Weiss, C. Drexler, S. D. Ganichev, J. Kerbusch, A. Erbe, R. J. Suess, T. E. Murphy, S. Chatterjee, K. Kolata, J. Ohser, J. C. König-Otto, H. Schneider, M. Helm, S. Winnerl: “Universal ultrafast detector for short optical pulses based on graphene”, in Optics Express 23 (2015) 28728-28735 (DOI: 10.1364/OE.23.028728)

Weitere Informationen:
Dr. Stephan Winnerl
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel. +49 351 260-3522
E-Mail: s.winnerl@hzdr.de

Medienkontakt:
Dr. Christine Bohnet | Pressesprecherin
Tel. +49 351 260-2450 | E-Mail: c.bohnet@hzdr.de

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Das HZDR ist Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte (Dresden, Leipzig, Freiberg und Grenoble) und beschäftigt rund 1.100 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 150 Doktoranden.

Weitere Informationen:

http://www.hzdr.de/presse/graphen-detektor

Simon Schmitt | Helmholtz-Zentrum Dresden-Rossendorf

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ein neues Experiment zum Verständnis der Dunklen Materie
14.06.2018 | Max-Planck-Institut für Radioastronomie

nachricht Quanten-Übertragung auf Knopfdruck
14.06.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 in Shanghai

Die AchemAsia geht in ihr viertes Jahrzehnt und bricht auf zu neuen Ufern: Das International Expo and Innovation Forum for Sustainable Chemical Production findet vom 21. bis 23. Mai 2019 in Shanghai, China statt. Gleichzeitig erhält die Veranstaltung ein aktuelles Profil: Die elfte Ausgabe fokussiert auf Themen, die für Chinas Prozessindustrie besonders relevant sind, und legt den Schwerpunkt auf Nachhaltigkeit und Innovation.

1989 wurde die AchemAsia als Spin-Off der ACHEMA ins Leben gerufen, um die Bedürfnisse der sich damals noch entwickelnden Iindustrie in China zu erfüllen. Seit...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: Li-Fi erstmals für das industrielle Internet der Dinge getestet

Mit einer Abschlusspräsentation im BMW Werk München wurde das BMBF-geförderte Projekt OWICELLS erfolgreich abgeschlossen. Dabei wurde eine Li-Fi Kommunikation zu einem mobilen Roboter in einer 5x5m² Fertigungszelle demonstriert, der produktionsübliche Vorgänge durchführt (Teile schweißen, umlegen und prüfen). Die robuste, optische Drahtlosübertragung beruht auf räumlicher Diversität, d.h. Daten werden von mehreren LEDs und mehreren Photodioden gleichzeitig gesendet und empfangen. Das System kann Daten mit mehr als 100 Mbit/s und fünf Millisekunden Latenz übertragen.

Moderne Produktionstechniken in der Automobilindustrie müssen flexibler werden, um sich an individuelle Kundenwünsche anpassen zu können. Forscher untersuchen...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: ALMA entdeckt Trio von Baby-Planeten rund um neugeborenen Stern

Neuartige Technik, um die jüngsten Planeten in unserer Galaxis zu finden

Zwei unabhängige Astronomenteams haben mit ALMA überzeugende Belege dafür gefunden, dass sich drei junge Planeten im Orbit um den Säuglingsstern HD 163296...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Simulierter Eingriff am virtuellen Herzen

18.06.2018 | Veranstaltungen

Künstliche Intelligenz – Schafft der Mensch seine Arbeit ab?

15.06.2018 | Veranstaltungen

Internationale Konferenz zur Asteroidenforschung in Garching

13.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Abwehrmechanismus gegen Sauerstoffradikale entdeckt

18.06.2018 | Biowissenschaften Chemie

Umwandlung von nicht-neuronalen Zellen in Nervenzellen

18.06.2018 | Biowissenschaften Chemie

Im Fußballfieber: Rittal Cup verspricht Spannung und Spaß

18.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics