Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher aus den USA und Dresden entwickeln Breitband-Detektor aus Graphen

27.10.2015

Wissenschaftler des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) haben zusammen mit Kollegen aus den USA und Deutschland einen neuen optischen Detektor aus Graphen entwickelt, der extrem schnell auf einfallendes Licht unterschiedlichster Wellenlängen reagiert und schon bei Zimmertemperatur funktioniert. Erstmals kann somit ein einzelner Detektor den Spektralbereich von sichtbarem Licht über die Infrarot-Strahlung bis hin zur Terahertz-Strahlung überwachen. Die HZDR-Wissenschaftler nutzen den neuen Graphen-Detektor bereits zur exakten Synchronisation von Laser-Systemen.

Eine kleine Flocke Graphen auf Siliziumcarbid und eine futuristisch anmutende Antenne – fertig ist der neue Graphen-Detektor. Diese vergleichsweise simple und auch preiswerte Konstruktion kann erstmals als einzelner Detektor den enorm großen Spektralbereich vom sichtbaren Licht bis zur Terahertz-Strahlung abdecken.


Die äußere Antenne des Detektors fängt langwellige Infrarot- und Terahertz-Strahlung ein und leitet sie zu einer Graphen-Flocke, die sich in der Mitte der Struktur befindet.

M. Mittendorff

„Im Gegensatz zu anderen Halbleitern, wie Silizium oder Galliumarsenid, kann Graphen Licht von sehr unterschiedlicher Photonenenergie aufnehmen und in elektrische Signale umwandeln. Wir mussten hier nur noch mit einer breitbandigen Antenne und dem passenden Substrat die idealen Rahmenbedingungen schaffen“, erklärt Dr. Stephan Winnerl, Physiker am Institut für Ionenstrahlphysik und Materialforschung des HZDR.

Bereits 2013 hatte der damalige HZDR-Doktorand Martin Mittendorff den Vorgänger des Graphen-Detektors entwickelt. Als Postdoc an der University of Maryland hat er ihn nun zusammen mit seinen Dresdner Kollegen sowie Forschern aus Marburg, Regensburg und Darmstadt perfektioniert. Das Funktionsprinzip:

Die antennengekoppelte Graphen-Flocke absorbiert die Strahlung, wodurch die Energie der Photonen auf die Elektronen im Graphen übertragen wird. Solche „heißen Elektronen“ erhöhen den elektrischen Widerstand des Detektors und führen so zu schnellen elektrischen Signalen. In nur 40 Pikosekunden – das sind Billionstel einer Sekunde – kann der Detektor einfallendes Licht registrieren.

Großer Spektralbereich durch Siliziumcarbid-Substrat

Besonders die Auswahl des Substrats war jetzt ein entscheidender Schritt zur Verbesserung des kleinen Lichtfängers, wie Stephan Winnerl erläutert: „Zuvor verwendete Halbleiter-Substrate haben stets einige Wellenlängen absorbiert, Siliziumcarbid verhält sich hingegen im gesamten Spektralbereich passiv.“ Hinzu kommt eine Antenne, die wie ein Trichter wirkt und langwellige Infrarot- und Terahertz-Strahlung einfängt.

Die Wissenschaftler konnten so den abgedeckten Spektralbereich im Vergleich zum Vorgänger fast um den Faktor 90 steigern. Die kürzeste messbare Wellenlänge ist damit 1000 Mal kleiner als die längste. Zum Vergleich: Rot, das langwelligste Licht, das das menschliche Auge wahrnehmen kann, hat lediglich die doppelte Wellenlänge von Violett, dem kurzwelligsten sichtbaren Licht.

Am HZDR wird dieser optische Universaldetektor bereits genutzt, um die beiden Freie-Elektronen-Laser am ELBE-Zentrum für Hochleistungs-Strahlenquellen exakt mit anderen Lasern zu synchronisieren. Besonders wichtig ist diese Justierung für sogenannte Pump-Probe-Experimente: Dabei regen Forscher ein Material mit einem Laser an („pump“) und nutzen anschließend einen zweiten Laser mit anderer Wellenlänge zur Messung („probe“).

Für solche Untersuchungen müssen die Pulse der Laser exakt aufeinander abgestimmt werden. Dafür setzen die Wissenschaftler den Graphen-Detektor wie eine Stoppuhr ein: Er teilt ihnen mit, wann die Laserpulse ins Ziel kommen und durch seine große Bandbreite wird ein Wechsel des Detektors als potentielle Fehlerquelle vermieden. Ein weiterer Vorteil ist, dass alle Messungen bei Zimmertemperatur ablaufen können und auf die aufwendige und kostspielige Stickstoff- oder Heliumkühlung anderer Detektoren verzichtet werden kann.

Publikation:
M. Mittendorff, J. Kamann, J. Eroms, D. Weiss, C. Drexler, S. D. Ganichev, J. Kerbusch, A. Erbe, R. J. Suess, T. E. Murphy, S. Chatterjee, K. Kolata, J. Ohser, J. C. König-Otto, H. Schneider, M. Helm, S. Winnerl: “Universal ultrafast detector for short optical pulses based on graphene”, in Optics Express 23 (2015) 28728-28735 (DOI: 10.1364/OE.23.028728)

Weitere Informationen:
Dr. Stephan Winnerl
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel. +49 351 260-3522
E-Mail: s.winnerl@hzdr.de

Medienkontakt:
Dr. Christine Bohnet | Pressesprecherin
Tel. +49 351 260-2450 | E-Mail: c.bohnet@hzdr.de

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Das HZDR ist Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte (Dresden, Leipzig, Freiberg und Grenoble) und beschäftigt rund 1.100 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 150 Doktoranden.

Weitere Informationen:

http://www.hzdr.de/presse/graphen-detektor

Simon Schmitt | Helmholtz-Zentrum Dresden-Rossendorf

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Moleküle brillant beleuchtet
23.04.2018 | Max-Planck-Institut für Quantenoptik

nachricht Wie zerfallen kleinste Bleiteilchen?
23.04.2018 | Ernst-Moritz-Arndt-Universität Greifswald

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Metalle verbinden ohne Schweißen

Kieler Prototyp für neue Verbindungstechnik wird auf Hannover Messe präsentiert

Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Moleküle brillant beleuchtet

23.04.2018 | Physik Astronomie

Sauber und effizient - Fraunhofer ISE präsentiert Wasserstofftechnologien auf Hannover Messe

23.04.2018 | HANNOVER MESSE

Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen

23.04.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics