Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Flüssigkristall-Moleküle formen Nano-Ringe

06.02.2018

An DESYs Röntgenquelle PETRA III haben Forscher eine verblüffende Form der Selbstorganisation in Flüssigkristallen untersucht: Werden die Flüssigkristalle in zylindrische Nanoporen gefüllt und erhitzt, bilden ihre Moleküle beim Abkühlen geordnete Ringe – ein Zustand, der in dem Material sonst nicht natürlicherweise vorkommt. Dieses Verhalten ermöglicht Nanomaterialien mit neuen optischen und elektrischen Eigenschaften, wie das Team unter Leitung von Patrick Huber von der Technischen Universität Hamburg (TUHH) im Fachblatt „Physical Review Letters“ berichtet.

Die Wissenschaftler hatten eine besondere Form von Flüssigkristallen untersucht, die aus scheibenförmigen Molekülen aufgebaut sind, sogenannte diskotische Flüssigkristalle. In diesen Materialien können die Scheiben-Moleküle von selbst hohe, elektrisch leitfähige Säulen bilden, indem sie sich wie Münzen aufeinanderstapeln.


Blick in einen weitgehend geordneten Flüssigkristall in einer Nanopore.

Bild: A. Zantop/M. Mazza/K. Sentker/P. Huber, Max-Planck Institut für Dynamik und Selbstorganisation/Technische Universität Hamburg (TUHH)


Stufen der Selbstorganisation bei sinkender Temperatur.

Bild: A. Zantop/M. Mazza/K. Sentker/P. Huber, Max-Planck Institut für Dynamik und Selbstorganisation/Technische Universität Hamburg; Quantized Self-Assembly of Discotic Rings in a Liquid Crystal Confined in Nanopores, 'Physical Review Letters', 2018; CC BY 4.0

Die Forscher füllten diskotische Flüssigkristalle in Nanoporen in einem Silikatglas. Die zylindrischen Poren hatten einen Durchmesser von nur 17 Nanometern (millionstel Millimetern) und eine Tiefe von 0,36 Millimetern.

Dort wurden die Flüssigkristalle auf rund 100 Grad Celsius erhitzt und kühlten anschließend langsam ab. Dabei formten sich aus den zunächst ungeordneten Scheiben-Molekülen konzentrische Ringe, die wie rund gebogene Säulen angeordnet waren. Beginnend vom Rand der Pore bildete sich mit sinkender Temperatur schrittweise ein Ring nach dem anderen, bis bei etwa 70 Grad nahezu der gesamte Querschnitt der Pore mit konzentrischen Ringen aufgefüllt war. Beim erneuten Erhitzen verschwanden die Ringe nach und nach wieder.

„Diese Änderung der molekularen Struktur in dem eingeschlossenen Flüssigkristall lässt sich mit Methoden der Röntgendiffraktion sehr genau als Funktion der Temperatur verfolgen“, erläutert DESY-Forscherin Milena Lippmann aus dem Autorenteam, die die Experimente an DESYs Messstation P08 bei PETRA III vorbereitet und mit durchgeführt hat.

„Die Kombination aus Symmetrie und Einschluss führt zu neuen, unerwarteten Phasenübergängen“, ergänzt Ko-Autor Marco Mazza vom Göttinger Max-Planck-Institut für Dynamik und Selbstorganisation, wo der beobachtete Prozess mit Simulationsrechnungen nachgestellt worden war. MPI-Forscher Arne Zantop hatte zu diesem Zweck ein theoretisches und numerisches Modell für den Flüssigkristall in beschränkter Geometrie entwickelt, welches die experimentellen Ergebnisse bestätigt und bei deren Interpretation hilft.

Die einzelnen Ringe formten sich schrittweise bei bestimmten Temperaturen. „Das ermöglicht es, einzelne Nano-Ringe durch kleine Temperaturänderungen ein- und auszuschalten“, betont Hauptautorin Kathrin Sentker von der TUHH. Sie ist durch überraschend stufenartige Signalveränderungen in laser-optischen Experimenten auf diesen Prozess gestoßen.

Derartige quantisierte Zustandsänderungen kommen sonst typischerweise erst bei sehr tiefen Temperaturen vor. Das Flüssigkristall-System zeigt dieses Quantenverhalten jedoch sogar schon deutlich oberhalb der Raumtemperatur.

Da sich die opto-elektrischen Eigenschaften diskotischer Flüssigkristalle mit dem Entstehen von Molekülsäulen ändern, ist die in Nanoporen eingeschlossene Variante ein vielversprechender Kandidat für das Design neuer optischer Metamaterialien, deren Eigenschaften sich schrittweise über die Temperatur steuern lassen.

Die untersuchten Nanostrukturen könnten auch zu neuen Anwendungen in organischen Halbleitern führen, etwa zu temperaturschaltbaren Nanodrähten, erläutert Ko-Autor Andreas Schönhals von der Bundesanstalt für Materialforschung und -prüfung (BAM), der sich für die thermischen und elektrischen Eigenschaften dieser Systeme interessiert.

„Das beobachtete Phänomen ist ein gutes Beispiel dafür, wie vielseitig sich weiche Materie an extreme räumliche Beschränkungen anpassen kann und wie dies zu neuen Erkenntnissen in der Physik und zu neuen Design- und Kontrollprinzipien für die Selbstorganisation funktionaler Nanomaterialien führt“, erläutert Forschungsleiter Huber.

An der Studie waren auch das Helmholtz-Zentrum Berlin und die Technische Universität Czestochowa in Polen beteiligt. Sentker und Huber sind Mitglieder des Sonderforschungsbereichs (SFB) 986 „Maßgeschneiderte Multiskalige Materialsysteme – M3“, der seit 2012 von der Deutschen Forschungsgemeinschaft (DFG) gefördert wird und die materialwissenschaftlichen Kompetenzen im Großraum Hamburg bündelt.


DESY zählt zu den weltweit führenden Beschleunigerzentren und erforscht die Struktur und Funktion von Materie – vom Wechselspiel kleinster Elementarteilchen, dem Verhalten neuartiger Nanowerkstoffe und lebenswichtiger Biomoleküle bis hin zu den großen Rätseln des Universums. Die Teilchenbeschleuniger und die Nachweisinstrumente, die DESY an seinen Standorten in Hamburg und Zeuthen entwickelt und baut, sind einzigartige Werkzeuge für die Forschung. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert.


Originalveröffentlichung
Quantized Self-Assembly of Discotic Rings in a Liquid Crystal Confined in Nanopores; Kathrin Sentker, Arne W. Zantop, Milena Lippmann, Tommy Hofmann, Oliver H. Seeck, Andriy V. Kityk, Arda Yildirim, Andreas Schönhals, Marco G. Mazza, and Patrick Huber; „Physical Review Letters”, 2018; DOI: 10.1103/PhysRevLett.120.067801

Weitere Informationen:

https://www.desy.de/aktuelles/news_suche/index_ger.html?openDirectAnchor=1339&am... - Text und Bildmaterial im Web
https://doi.org/10.1103/PhysRevLett.120.067801 - wissenschaftliche Originalveröffentlichung

Dr. Thomas Zoufal | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics