Flipper auf atomarem Niveau

Darstellung der Photodissoziation von Triiodid, initiiert durch einen Laserpuls und die sekundäre Reaktion, die zu dem neuen 4-Atom-Zwischenprodukt führt, gefolgt von der Rekombinationsreaktion. Bild aus R. Xian et al. Nat. Chem. (2017), DOI: 10.1038/nchem.2751

Die Photodissoziation von Triiodid Anionen ([I₃]⁻) ist eine klassische Lehrbuchreaktion, die sowohl in Lösung als auch in der Gasphase umfassend untersucht wurde. Das Sondieren der ultraschnellen Dynamik dieser Reaktion im festen Zustand war jedoch aufgrund der partiellen Reversibilität der Reaktion und ihrer Empfindlichkeit gegenüber experimentellen Bedingungen als schwierig erachtet worden.

Ein Team von Wissenschaftlern des MPSD am CFEL in Hamburg und der Universität Edinburgh haben jetzt durch ein verbessertes Probenhandling ein neues Reaktionszwischenprodukt entdeckt, das Tetraiodidradikalanion ([I₄]• ⁻), welches als Ergebnis der eindeutigen Ordnung von [I₃]⁻ im Kristallgitter gebildet wurde, um das dissoziierende Jod-Atom zu leiten, – in einem Prozeß der an eine Newtonsche Wiege in Quantengröße erinnert. Die Ergebnisse sind jetzt in Nature Chemistry veröffentlicht.

In Lösung dissoziieren die Triiodidanionen überwiegend in Iodradikal ([I]•) und Diiodid ([I₂]•⁻) Radikale. Das umliegende Lösungsmittel spielt bei der Trägheitsbegrenzung der Reaktionsprodukte eine passive Rolle, die letztlich einer geminaten und nicht-geminaten Rekombination unterliegen. In dem geordneten Ionengitter der Tetra-n-butylammonium-Triiodid-Kristallen wurde im Gegensatz dazu ein dramatisch unterschiedliches Verhalten gefunden.

Hierbei beschränkt die lokale Geometrie die Reaktion und damit wird das primäre Photoprodukt, Iodradikal ([I]•), durch das Gitter geführt, um eine Bindung mit einem benachbarten ([I₃]⁻), zu bilden, was zu einem sekundären Reaktionsprodukt dem Tetraiodid-Radikal-Anion ([I₄]• ⁻) führt, was bisher nicht für diese Reaktion beschrieben wurde. Wie in der Abbildung gezeigt, sind die Reaktanten buchstäblich in dem Gitter ausgerichtet um dieses Vier-Atom-Zwischenprodukt zu bilden.

„Die dissoziierten Iodatome kollidieren in einer Newtonschen Wiege (einfaches Kugelstoßpendel) in Quanten Dimension mit anderen Triiodidmolekülen, um dieses neuartige Reaktionsprodukt zu bilden“, erklärt Dwayne Miller, und er fügt hinzu: “ Am wichtigsten ist, dass wir gezeigt haben, dass das Gitter den Reaktionsweg der Festkörper-Photochemie kohärent auf Femto- bis Pikosekunden-Zeitskalen leitet.“

Dieses Phänomen konnte nur dank neuer Proben-, Datenerfassungs- und Analysetechniken die am MPSD in Hamburg entwickelt wurden, sowie theoretische Berechnungen, durchgeführt an der Universität Edinburgh, beobachtet werden, um die elektronischen und vibrierenden Zuordnungen der verschiedenen Reaktionsteilnehmer zu unterstützen, die bislang die detaillierteste Auflösung der Reaktionszwischenstufen sowie die kohärenten Modi, welche die Triiodid-Photodissoziationsreaktion treiben, ermöglichten.
„Diese Beobachtungen bieten einen anderen konzeptionellen Rahmen um über Reaktionsprozesse nachzudenken und können einen Weg zeigen, wie man chemische Systeme an ein Bad als Mittel zur Erhöhung der Längenskalen unter chemischer Kontrolle koppelt „, schließt Miller ab.

http://www.mpsd.mpg.de/en/research/ard/ard – Webseite der Forschung von Prof. Miller
https://dx.doi.org/10.1038/nchem.2751 – Original Publikation bei Nature Chemistry

Media Contact

Dr. Joerg Harms Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

KI-basierte Software in der Mammographie

Eine neue Software unterstützt Medizinerinnen und Mediziner, Brustkrebs im frühen Stadium zu entdecken. // Die KI-basierte Mammographie steht allen Patientinnen zur Verfügung und erhöht ihre Überlebenschance. Am Universitätsklinikum Carl Gustav…

Mit integriertem Licht zu den Computern der Zukunft

Während Computerchips Jahr für Jahr kleiner und schneller werden, bleibt bisher eine Herausforderung ungelöst: Das Zusammenbringen von Elektronik und Photonik auf einem einzigen Chip. Zwar gibt es Bauteile wie MikroLEDs…

Antibiotika: Gleicher Angriffspunkt – unterschiedliche Wirkung

Neue antimikrobielle Strategien sind dringend erforderlich, um Krankheitserreger einzudämmen. Das gilt insbesondere für Gram-negative Bakterien, die durch eine dicke zweite Membran vor dem Angriff von Antibiotika geschützt sind. Mikrobiologinnen und…

Partner & Förderer