Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Finden Sie das laufende Huhn am Himmel

21.09.2011
Bildveröffentlichung der Europäischen Südsternwarte (Garching): Ein neues Bild der WFI-Kamera am MPG/ESO 2,2-Meter-Teleskop zeigt den Lambda-Centauri-Nebel im Sternbild Zentaur: eine Wolke aus glühendem Wasserstoffgas, gesprenkelt mit neugeborenen Sternen. Unter Astronomen firmiert das Gebilde unter der Katalognummer IC 2944. Im Englischen hat es den Beinamen “Running Chicken Nebula” (“Nebel des laufenden Huhns”), nach einer vogelähnlichen Struktur, die manche Menschen in seinen hellsten Regionen zu sehen meinen.

Der Nebel, dessen Entfernung von der Erde rund 6500 Lichtjahre beträgt, enthält heiße, neu geborene Sterne, die helles Ultraviolettlicht aussenden. Diese intensive Strahlung regt die umliegenden Wasserstoffwolken zum Leuchten an, das verleiht dem Nebel eine charakteristische rötliche Farbe. Solch eine Färbung ist typisch für Sternentstehungsregionen; eines der bekanntesten Beispiele dafür ist der Lagunennebel.


Aufnahme des Lambda-Centauri-Nebels. Wo ist das Huhn? Bild: ESO

Manche Betrachter machen in Bildern dieser rötlichen Sternentstehungsregion den Umriss eines Huhns aus. Diesem Umstand verdankt der Nebel im englischen Sprachraum seinen Spitznamen. Darüber welche der Strukturen das Huhn darstellen sollen, herrscht unter den Beobachtern allerdings erhebliche Uneinigkeit [1].

Ein weiteres Anzeichen dafür, dass sich in IC 2944 neue Sterne bilden, sind die undurchsichtigen schwarzen Klumpen, die sich in diesem Bild deutlich vom rötlichen Hintergrund abheben. Dies sind so genannte Bok-Globulen, Wolken aus Gas und Staub, die das Licht des leuchtstarken Hintergrundes absorbieren. Mit Hilfe von Infrarotteleskopen ist es möglich, durch den Staub, der sichtbares Licht absorbiert, hindurchzusehen und nachzuweisen, dass im Inneren einer Reihe dieser Globulen neue Sterne entstehen.

Die markantesten Bok-Globulen in diesem Bild sind die Thackeray-Globulen, benannt nach dem südafrikanischen Astronomen, der sie in den 1950er Jahren entdeckt hat. In diesem Bild sind sie inmitten einer Gruppe heller Sterne im oberen rechten Teil des Bildes zu sehen. Durch eine Aufnahme des NASA/ESA-Weltraumteleskops Hubble sind sie bekannt geworden.

Während die Hubble-Aufnahme größeren Detailreichtum in diesem Ausschnitt des Bildes bietet, ist die Stärke der hier verwendeten Kamera, dass sie in jeder Aufnahme eine deutlich größere Himmelsregion dokumentieren kann – eine Region von ungefähr der gleichen Größe wie die des Vollmonds am Himmel [2]. Die Kamera ist der Wide Field Imager, eine astronomische Spezialkamera mit besonders großem Blickfeld, die am MPG/ESO 2,2 m-Teleskop am ESO-Observatorium La Silla installiert ist. Ähnlich wie verschiedene Objektive es dem Fotografen erlauben, für jedes Bild das geeignete Blickfeld zu wählen, können Astronomen für ihre Forschungen auf Teleskope mit unterschiedlich großen Blickfeldern zurückgreife, und bei der Untersuchung ausgedehnter Himmelsobjekte jeweils das Instrument wählen, welches für ihr Forschungsziel am geeignetsten ist.

Ältere Geschwister der Sterne, die in den Thackeray-Globulen verborgen sind, finden sich in dem Sternhaufen IC 2948, der ebenfalls im Nebel des laufenden Huhns eingebettet ist. Verglichen mit anderen Sternen sind sie mit ihren paar Millionen Jahren noch sehr jung. Die Ultraviolettstrahlung, die diese hellen Sterne aussenden, liefert einen Großteil der Energie, die das Gas des Nebels zum Leuchten anregt. Für astronomische Verhältnisse sind solche leuchtenden Nebel recht kurzlebig; bereits nach einigen Millionen Jahren erlöscht ihr Leuchten. Auch dem Lambda-Centauri-Nebel steht dieses Schicksal bevor, wenn sein Gas zerstreut ist und nicht mehr genügend Ultraviolettstrahlung zur Anregung zur Verfügung steht.

Endnoten

[1] Wir sind gespannt darauf, zu erfahren, ob und wo Sie in diesem Nebel ein Huhn erkennen – zeichnen Sie Ihre Version des Huhns auf eine Kopie dieses Bildes und stellen Sie das Ergebnis auf der Flickr-Gruppe der ESO ein!

[2] Dieses Bild entstand als Teil des Cosmic Gems-Programms (wörtlich „kosmische Edelsteine“) der ESO. Diese Initiative nutzt hauptsächlich diejenigen Zeiten, zu denen die Beobachtungsbedingungen nicht den strengen Ansprüchen wissenschaftlicher Beobachtungsarbeit genügt, um Bilder von interessanten, faszinierenden oder von Himmelsobjekten anzufertigen, die einfach schön anzusehen sind. Die Bilddaten sind im wissenschaftlichen Archiv der ESO für jedermann zugänglich. Auch professionelle Astronomen können sie für ihre Zwecke nutzen.

Weitere Informationen

Die Europäische Südsternwarte ESO (European Southern Observatory) ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Getragen wird die Organisation durch ihre 15 Mitgliedsländer: Belgien, Brasilien, Dänemark, Deutschland, Finnland, Frankreich, Italien, die Niederlande, Österreich, Portugal, Spanien, Schweden, die Schweiz, die Tschechische Republik und das Vereinigte Königreich. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO betreibt drei weltweit einzigartige Beobachtungsstandorte in Nordchile: La Silla, Paranal und Chajnantor. Auf dem Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts und zwei Teleskope für Himmelsdurchmusterungen: VISTA, das größte Durchmusterungsteleskop der Welt, arbeitet im Infraroten, während das VLT Survey Telescope (VST) für Himmelsdurchmusterungen ausschließlich im sichtbaren Licht konzipiert ist. Die ESO ist der europäische Partner für den Aufbau des Antennenfelds ALMA, das größte astronomische Projekt überhaupt. Derzeit entwickelt die ESO ein Großteleskop der 40-Meter-Klasse für Beobachtungen im Bereich des sichtbaren und Infrarotlichts, das einmal das größte optische Teleskop der Welt werden wird, das European Extremely Large Telescope (E-ELT).

Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsstaaten (und einigen weiteren Ländern) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie in Heidelberg.

Kontaktinformationen

Carolin Liefke
ESO Science Outreach Network - Haus der Astronomie
Heidelberg, Deutschland
Tel: 06221 528226
E-Mail: eson-germany@eso.org
Richard Hook
ESO, La Silla, Paranal, E-ELT and Survey Telescopes Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
E-Mail: rhook@eso.org
Dies ist eine Übersetzung der ESO-Pressemitteilung eso1135.

M. Pössel | ESO Science Outreach Network
Weitere Informationen:
http://www.eso.org
http://www.eso.org/public/germany/news/eso1135/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die schnellste lichtgetriebene Stromquelle der Welt
26.09.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Internationales Forscherteam entdeckt kohärenten Lichtverstärkungsprozess in Laser-angeregtem Glas
25.09.2017 | Universität Kassel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie