Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Extrem kleine Atombewegungen werden mittels ultrakurzer Röntgenblitze aufgezeichnet

07.02.2017

Periodische Atombewegungen auf einer Längenskala von einem Milliardstel eines Millionstels eines Meters (10⁻¹⁵m) werden mittels ultrakurzer Röntgenimpulse abgebildet. Bei dieser neuen experimentellen Technik werden regelmäßig angeordnete Atome in einem Kristall durch einen Laserimpuls in Schwingungen versetzt, die mit Hilfe einer Reihe von Schnappschüssen über die geänderte Röntgenabsorption beobachten werden.

Ein Kristall ist eine regelmäßige, periodische Anordnung von Atomen oder Ionen, welche über Kräfte zwischen deren Elektronen zusammengehalten werden. Die Atomkerne können Schwingungen um ihre Gleichgewichtspositionen ausführen. Die räumliche Auslenkung der Kerne bei solchen Schwingungen ist viel kleiner als der Abstand zwischen benachbarten Atomen.


In einem Röntgen-Absorptionsexperiment regt Licht ein stark gebundenes Rumpfelektron in einen Leitungsbandzustand des Kristalls an.

Bild: MBI

Dennoch hat die Schwingungsbewegung eine Rückwirkung auf die Elektronen, in dem sie deren räumliche Verteilung moduliert und damit die elektronischen und optischen Eigenschaften des Kristalls verändert. Diese Prozesse laufen auf einer Zeitskala deutlich unterhalb einer Pikosekunde (ps) statt (1 ps = 10⁻¹² s) ab.

Um solche Effekte zu verstehen und auch anzuwenden, etwa in akusto-optischen Bauelementen, ist eine direkte Abbildung des filigranen Zusammenspiels zwischen Kern- und Elektronenbewegungen auf der Subpikosekunden-Zeitskala wünschenswert.

In der neusten Ausgabe der Fachzeitschrift Physical Review B (Rapid Communication) berichten Forscher vom Max-Born-Institut in Berlin (Deutschland), von den Swiss Federal Laboratories for Materials Science and Technology in Dübendorf (Schweiz) und dem National Institute of Standards and Technology, Gaithersburg (USA) über ein neuartiges Experiment, das es erlaubt einerseits kohärente Atomschwingungen in kleinen LiBH₄ Kristallen gezielt anzuregen und andererseits diese über die modifizierte Röntgenabsorption auszulesen [Abb. 1.]

In den Experimenten regte ein optischer Lichtimpuls (Wellenlänge 800 nm) mittels impulsiver Ramanstreuung ein optisches Phonon an [movie]. Die Atombewegungen dieser Schwingung verändern periodisch die Abstände zwischen Li⁺ und (BH₄)- Ionen. Diese Distanzänderungen modulieren wiederum die räumliche Verteilung der Elektronen im Kristall und damit das Röntgen-Absorptionsspektrum Li⁺-Ionen.

Auf diese Weise transformieren sich die Atomschwingungen in eine oszillatorische Modulation der Röntgenabsorption an der sogenannten Li K-Kante bei Photonenergien von 60 eV. Ultrakurze Röntgenblitze messen damit die Veränderungen der Röntgenabsorption zu verschiedenen Verzögerungszeiten zwischen Anreg- und Abtastimpulsen. Aus dieser Reihe von Schnappschüssen können dann die Atombewegungen rekonstruiert werden.

Das neue experimentelle Konzept ist extrem empfindlich und erlaubte zum ersten Mal Atomschwingungen mit extrem kleinen Amplituden anzustoßen und zu vermessen. Im vorliegenden Fall bewegten sich die Li⁺-Ionen nur eine Strecke von 3 Femtometern = 3 x 10⁻¹⁵ m, eine Länge die etwa dem Durchmesser eines Li+ Atomkerns entspricht. Diese Strecke ist damit 100000 mal kleiner als der Abstand zwischen den Ionen im Kristall.

Die experimentellen Beobachtungen sind in exzellenter Übereinstimmung mit einer detallierten Theorie der Röntgenabsorption. Diese neue Methode auf der Femtosekunden-Zeitskala birgt ein vielversprechendes Potential um das Zusammenspiel zwischen Kern- und Elektronenbewegungen in kondensierter Materie abzubilden und zu verstehen, eine wesentliche Voraussetzung für weitergehende Theorien und Anwendungen in verschiedenen Technologien.

Abb. 1: In einem Röntgen-Absorptionsexperiment regt Licht ein stark gebundenes Rumpfelektron in einen Leitungsbandzustand des Kristalls an, wie auf der linken Seite des der Abbildung gezeigt. Das Rumpfelektron des Li Atoms (grüne Wellenfunktion) wird ins Leitungsband (rote Wellenfunktion) angeregt, welches sowohl mit dem Li Kern als auch mit Borhydridgruppe wechselwirkt. Dieser Zustand reagiert sehr empfindlich auf Abstandsänderungen zwischen den An- und Kationen (siehe auch Abb. 2(b) und 3(d) im Hauptartikel). Auf der rechten Seite sieht man das Lithium K-Kanten-Röntgenabsorptionsspektrum für verschiedene, übertrieben große Schwingungsauslenkungen.

Movie: Was passiert in der Einheitszelle von LiBH₄ Kristallen nachdem eine impulsive Ramananregung mit einem Femtosekunden-Laserimpuls erfolgt ist? Oberes Teilbild: Gemessene, transiente Absorptionsänderung Δ A(t)(Symbole) als Funktion der Verzögerungszeit zwischen infraroten Anreg-Lichtimpulsen und Abtast-Impulsen im weichen Röntgenbereich bei Photonenergien von ħω = 61.5 eV [siehe auch Abb. 3(a) im Hauptartikel]. Die untere Box zeigt die Atome in der Einheitszelle von LiBH₄ Kristallen mit roten Boratomen, grauen Wasserstoffatomen und grünen Lithiumatomen. Der sich bewegende blaue Punkt im oberen Teilbild ist synchronisiert mit den sich bewegenden Atomen in der unteren Box. Die Amplitude der Bewegnung ist um den Faktor 30.000 überzeichnet um die konzertierte Bewegung sichtbar zu machen. Die rötliche Farbe der Einheitszelle zeigt während Impulsüberlapps die Intensität der infraroten Anreg-Lichtimpulse.

Originalpublikation: Physical Review B 95, 081101 (R) (2017)
Ultrafast modulation of electronic structure by coherent phonon excitations
J. Weisshaupt, A. Rouzée, M. Woerner, M. J. J. Vrakking, T. Elsaesser, E. L. Shirley, and A. Borgschulte

Kontakt
Max-Born-Institut (MBI)
im Forschungsverbund Berlin e.V
Max-Born-Institut
Max-Born-Straße 2A
12489 Berlin

Dr. Michael Wörner
Tel. 030 6392 1470
woerner@mbi-berlin.de

Jannick Weisshaupt
Tel. 030 6392 1471
weisshau@mbi-berlin.de

Dr. Arnaud Rouzée
Tel. 030 6392 1240
rouzee@mbi-berlin.de

Prof. Dr. Marc Vrakking
Tel. 030 6392 1200
marc.vrakking@mbi-berlin.de

Prof. Dr. Thomas Elsässer
Tel. 030 6392 1400
elsaesser@mbi-berlin.de

Weitere Informationen:

http://www.mbi-berlin.de
http://www.mbi-berlin.de/images/highlights/movie/Weiss_Movie_Modulation.mp4 - Movie

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Bilder magnetischer Strukturen auf der Nano-Skala
20.04.2018 | Georg-August-Universität Göttingen

nachricht Licht macht Ionen Beine
20.04.2018 | Max-Planck-Institut für Festkörperforschung, Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics