Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Experimenteller Nachweis der unterschiedlichen Lichtgeschwindigkeiten in einem

19.05.2011
Im absoluten Vakuum breitet sich das Licht mit einer konstanten Geschwindigkeit von 299 792 458 m/s in alle Richtungen aus.

Die Lichtgeschwindigkeit ist jedoch unter bestimmten Bedingungen von deren Ausbreitungsrichtung abhängig, zum Beispiel in einem elektromagnetischen Feld.

Ende der 70er Jahre wurde dies bereits theoretisch bewiesen, konnte jedoch bislang noch nie experimentell beobachtet werden.

Forschern des CNRS-Labors "Kollisionen, Aggregate, Reaktivität" (Universität Paul Sabatier, Toulouse) ist es nun gelungen, mit einer Genauigkeit von einer milliardstel Sekunde den Unterschied zwischen der Ausbreitungsgeschwindigkeit des Lichtes in zwei unterschiedliche Richtungen unter einem elektromagnetischem Feld in Stickstoff zu messen.

Das Experiment wurde in einem mit Stickstoff gefüllten optischen Resonator durchgeführt (siehe Bild), in dem einige Lichtstrahlen durch Reflektionen in den Spiegeln reflektiert werden. Im Resonator befinden sich Magnete und Elektroden, die ein starkes elektrisches Feld erzeugen. Dieses ist ca. 20.000 Mal stärker als das Magnetfeld der Erde.

Somit konnten Forscher des CNRS zum ersten Mal den experimentellen Nachweis erbringen, dass das Licht sich in einem Gas, das sich in einem elektromagnetischen Feld befindet, bei der Hin- und Herbewegung mit unterschiedlichen Geschwindigkeiten ausbreitet. Der Geschwindigkeitsunterschied beträgt dabei ca. ein milliardstel Meter pro Sekunde und wird vom elektromagnetischen Feld verursacht.

Durch diese Ergebnisse werden ganz neue Perspektiven eröffnet, wie zum Beispiel im Bereich der Messung der Anisotropie bei der Lichtausbreitung. Gelingt es, die Empfindlichkeit der Messgeräte noch zu erhöhen, könnten die Forscher die winzigen Abweichungen von der Lorentz-Invarianz im Rahmen der Relativitätstheorie beobachten, und somit das Standardmodell verbessern, das heute die gesamten Wechselwirkungen zwischen den Elementarteilchen beschreibt. Zum Anderen könnte diese Richtungsanisotropie ganz neue Anwendungen in der Optik liefern, insbesondere bei Komponenten, deren physikalisches Verhalten von der Ausbreitungsrichtung abhängt und vom elektromagnetischen Feld kontrolliert wird.

Kontakt:

Cécile Robilliard, Forscherin am CNRS – Tel: 00 33 (0)5 61 55 76 72 (72 06) – E-Mail: cecile.robilliard@irsamc.ups-tlse.fr

Quelle: Pressemitteilung des CNRS – 11.05.2011 – http://www2.cnrs.fr/presse/communique/2179.htm

Redakteur: Lucas Ansart, lucas.ansart@diplomatie.gouv.fr

Lucas Ansart | Wissenschaft-Frankreich
Weitere Informationen:
http://www.wissenschaft-frankreich.de

Weitere Berichte zu: Ausbreitungsrichtung CNRS Lichtgeschwindigkeit Stickstoff

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen