Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erstmals Schaleneffekte in den schwersten Elementen direkt gemessen

10.08.2012
Ergebnisse werden zu besseren Vorhersagen über die „Insel der Stabilität“ führen

Ein internationales Team von Wissenschaftlern hat zum ersten Mal die Stärke von Schaleneffekten in Atomkernen sehr schwerer Elemente direkt gemessen. Die Ergebnisse liefern Informationen über die Kernstruktur superschwerer Elemente und dienen dazu, die Vorhersagen über die „Insel der Stabilität“ zu verbessern.


Ausschnitt der Nuklidkarte (Neutron-Proton-Kombinationen) im Bereich der schwersten Elemente. Diese „Landkarte“ zeigt die bisher bekannten Isotope der schwersten Elemente als Kästchen. Blau: Theoretische Vorhersage der durch Schaleneffekte erhöhten Bindungsenergie. Rot: Gemessene Lawrencium- und Nobeliumisotope. Grün / gelb: Nuklide, deren Masse durch die Messergebnisse besser bestimmt wird. Orange: Lage gefüllter Schalen.

Bild: Science/AAAS

So nennen Wissenschaftler eine Gruppe von Atomkernen superschwerer Elemente, die nicht in kurzer Zeit zerfallen, sondern außerordentlich stabil und damit langlebig sind. Wo sich diese Insel genau befindet, ist bislang nicht bekannt.

Die jetzigen Messungen an der GSI Helmholtzzentrum für Schwerionenforschung GmbH in Darmstadt erfolgten an den Elementen Nobelium und Lawrencium mit der Ionenfallenanlage SHIPTRAP. Die Ergebnisse der Forschergruppe hat das renommierte Wissenschaftsmagazin Science veröffentlicht.

„Superschwer“ genannte Elemente werden durch Schaleneffekte im Atomkern stabilisiert und können nur deshalb überhaupt existieren, wenn auch in der Regel nur für kurze Zeiten. Die starke Wechselwirkung führt dazu, dass die Bausteine der Atomkerne, die Protonen und Neutronen, in Schalen angeordnet sind. Bei jeweils einer bestimmten als „magisch“ bezeichneten Anzahl von Protonen und Neutronen sind Schalen komplett gefüllt und die Bausteine besonders stark gebunden. Entsprechend sind solche Atomkerne stabiler und langlebiger. Ohne den stabilisierenden Einfluss der Schalen würden superschwere Atomkerne wegen der starken gegenseitigen Abstoßung der vielen Protonen augenblicklich zerplatzen.

Theoretische Vorhersagen lassen erwarten, dass gefüllte Protonen‐ und Neutronenschalen bei superschweren Atomkernen zu sehr langen Lebensdauern führen, der „Insel der Stabilität“. Wo genau die entsprechenden Schalenabschlüsse liegen, ist allerdings zurzeit noch umstritten. Einige theoretische Ansätze sagen beispielsweise die nächste magische Protonenzahl für Element 114 vorher, andere für Element 120 oder sogar 126. Unklar ist auch, welche Lebensdauern diese Atomkerne haben, ob „nur“ hunderte von Jahren oder vielleicht doch Jahrtausende oder sogar Jahrmillionen. Alle bisher bekannten Atomkerne superschwerer Elemente wurden im Labor erzeugt und sind kurzlebig. In der Natur konnten superschwere Elemente bisher nicht nachgewiesen werden.

Für genauere theoretische Vorhersagen ist die Kenntnis der Stärke der Schaleneffekte, die eine erhöhte Bindungsenergie der Kernbausteine bei gefüllten Schalen bewirken, extrem wichtig. Die Bindungsenergie ist nach Einsteins berühmter Formel E=mc^2 direkt mit der Masse verknüpft. Mit der Ionenfallenanlage SHIPTRAP, der genauesten Waage der Welt für die schwersten Elemente, gelang es jetzt erstmals, sehr schwere Atomkerne im Bereich der magischen Neutronenzahl N=152 sehr genau zu wiegen. Insbesondere wurden die Verhältnisse bei Nobelium (Element 102) und Lawrencium (Element 103) untersucht. Da diese Elemente nicht in der Natur vorkommen, mussten die Wissenschaftler sie am GSI‐Teilchenbeschleuniger herstellen und dann mit der Ionenfalle einfangen. Die Herausforderung bestand unter anderem in der geringen Anzahl von Teilchen, die zur Verfügung standen, zum Beispiel beim Isotop Lawrencium‐256 gerade einmal knapp 50 Atome über eine Messzeit von etwa vier Tagen.

Die neuen Messergebnisse dienen dazu, die aktuell besten Modelle zur Beschreibung der schwersten Elemente zu testen und stellen so einen wichtigen Baustein zur Weiterentwicklung der Modelle dar. Damit werden präzisere Vorhersagen zur Lage und Ausdehnung der „Insel der Stabilität“ superschwerer Elemente inmitten von radioaktiven, schnell zerfallenden Elementen möglich.

Die Experimente wurden unter Federführung der GSI und des 2009 gegründeten Helmholtz‐Instituts Mainz (HIM), das gemeinsam von der GSI und der Johannes Gutenberg‐Universität Mainz getragen wird, durchgeführt. Beteiligt waren auch Wissenschaftler der Universitäten Gießen, Granada (Spanien), Greifswald, Heidelberg, Mainz, München und Padua (Italien) sowie des Max‐Planck‐Instituts für Kernphysik Heidelberg und des PNPI St. Petersburg (Russland).

Wissenschaftliche Ansprechpartner:
Dr. Michael Block
GSI Helmholtzzentrum für Schwerionenforschung
Planckstrasse 1
64291 Darmstadt
http://www.gsi.de

Prof. Dr. Christoph E. Düllmann
Helmholtz Institut Mainz und Institut für Kernchemie
Johannes Gutenberg-Universität
55099 Mainz

http://www.helmholtz.de/en/research/promoting_research/helmholtz_
institutes/helmholtz_institute_mainz
http://www.kernchemie.uni-mainz.de/eng/index.php

Prof. Klaus Blaum
Max-Planck-Institut für Kernphysik
Saupfercheckweg 1
69117 Heidelberg
http://www.mpi-hd.mpg.de

Prof. Lutz Schweikhard
Institut für Physik
Ernst-Moritz-Arndt-Universität Greifswald
17487 Greifswald
http://www.physik.uni-greifswald.de/physik01

Priv. Doz. Dr. Peter G. Thirolf
Fakultät für Physik der Ludwig-Maximilians- Universität
Am Coulombwall 1
85748 Garching
http://www.en.physik.uni-muenchen.de/index.html

Dr. Wolfgang Plaß
II. Physikalisches Institut
Justus-Liebig Universität
Heinrich-Buff-Ring 14
35392 Gießen
http://pcweb.physik.uni-giessen.de/exp2
http://dx.doi.org/10.1126/science.1225636
Originalveröffentlichung: E. Minaya Ramirez et al. “Direct mapping of nuclear shell effects in the heaviest elements” von, Science 2012

Dr. Ingo Peter | idw
Weitere Informationen:
http://www.gsi.de
http://dx.doi.org/10.1126/science.1225636
http://www.mpi-hd.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften