Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erster Meilenstein für den neuen Elektronenbeschleuniger an der Universität Mainz erreicht

08.06.2015

Offizieller Projektstart zur Herstellung der supraleitenden Beschleunigermodule

Mit dem Startschuss für die Herstellung zweier supraleitender Beschleunigermodule für den zukünftigen Elektronenbeschleuniger MESA („Mainz Energy-Recovering Superconducting Accelerator“) an der Johannes Gutenberg-Universität Mainz (JGU) geht das Projekt MESA in die nächste Phase.


Die Grafik zeigt einen Schnitt durch das hochkomplexe Beschleunigermodul mit thermischem Isoliersystem und den supraleitenden Hohlraumresonatoren (Kavitäten).

Abb./©: Helmholtz-Zentrum Dresden-Rossendorf (HZDR)

MESA basiert auf einem einzigartigen Konzept, das vorsieht, einen Teil der Energie, die zur Beschleunigung des Elektronenstrahls benötigt wird, zurückzugewinnen. „Dadurch lassen sich die Betriebskosten von MESA deutlich reduzieren“, meint Professor Kurt Aulenbacher, der Leiter des Projektteams.

MESA ist das zentrale Instrument für die Durchführung mehrerer Schlüsselexperimente am Exzellenzcluster PRISMA („Precision Physics, Fundamental Interactions and Structure of Matter“). Dazu gehören die genaue Vermessung des Protonradius und die Suche nach den sogenannten dunklen Photonen, die das Rätsel der dunklen Materie erklären könnten.

Erstmals traf sich Ende Mai das komplette Projektteam zur Herstellung der supraleitenden Beschleunigermodule, bestehend aus Ingenieuren, Physikern und Fertigungsspezialisten des Instituts für Kernphysik sowie der Herstellerfirma Research Instruments, vor Ort, um technische Details und Zeitpläne für die Fertigung der knapp vier Meter langen Module festzulegen.

Beschleunigermodule sind hochkomplexe technische Bestandteile moderner Linearbeschleuniger, um Elementarteilchen – im Falle von MESA sind es Elektronen – durch die Anwendung elektromagnetischer Wechselfelder auf nahezu Lichtgeschwindigkeit zu beschleunigen.

Die MESA-Module sind supraleitend und müssen daher bei einer Temperatur von minus 271,3 Grad Celsius, nahe dem absoluten Nullpunkt, betrieben werden. Sie bestehen aus einem thermischen Isoliersystem (Kryostat) mit eingebauten supraleitenden Hohlraumresonatoren, sogenannten Kavitäten. Die Kavitäten selbst bestehen aus Niob, einem bei sehr niedrigen Temperaturen supraleitenden Metall.

Um die benötigte Betriebstemperatur von minus 271,3 Grad Celsius zu garantieren, werden die Kavitäten in einem mit flüssigem Helium umspülten Tank eingeschweißt. Die mit dem Heliumtank umschlossenen Kavitäten wiederum sind von einem weiteren Tank umhüllt, vergleichbar mit einer Thermoskanne. Zusätzlich befindet sich ein mit flüssigem Stickstoff durchflossenes Rohrsystem zwischen Helium- und Außentank als zusätzliche Isolierung.

MESA ist der weltweit erste supraleitende, energierückgewinnende Beschleuniger, der für Forschungszwecke eingesetzt werden wird. „MESA bietet mit seiner hohen Strahlintensität und -qualität einzigartige Voraussetzungen für ein zukunftsweisendes Experimentierprogramm zur Erforschung und Überprüfung der Grenzen der heute bekannten Phänomene in der Elementarteilchenphysik, eines der zentralen Forschungsziele von PRISMA", sagt Professor Hartmut Wittig, Sprecher des Exzellenzclusters, aus dessen Mitteln die Entwicklung und der Bau von MESA finanziert wird.

Die an PRISMA beteiligten Forscherinnen und Forscher an der Johannes Gutenberg-Universität fiebern der geplanten Inbetriebnahme des Beschleunigers in 2017 entgegen, da MESA hinsichtlich einer zweiten Förderperiode des Exzellenzclusters eine maßgeblich Rolle spielen wird.

Abbildungen:
http://www.uni-mainz.de/bilder_presse/08_kernphysik_mesa_beschleunigermodule_01....
Die Grafik zeigt einen Schnitt durch das hochkomplexe Beschleunigermodul mit thermischem Isoliersystem und den supraleitenden Hohlraumresonatoren (Kavitäten).
Abb./©: Helmholtz-Zentrum Dresden-Rossendorf (HZDR)

http://www.uni-mainz.de/bilder_presse/08_kernphysik_mesa_beschleunigermodule_02....
Modell des MESA-Beschleunigers: Die grünen Zylinder stellen die beiden Beschleunigermodule dar. Nach zwei vollständigen Rezirkulationen erreicht der Elektronenstrahl eine Energie von 150 MeV.
Abb./©: Institut für Kernphysik, JGU

Weitere Informationen:
Univ.-Prof. Dr. Kurt Aulenbacher
Institut für Kernphysik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-25804
E-Mail: aulenbac@mail.uni-mainz.de
http://www.kph.uni-mainz.de

Dr. Felix Schlander
Institut für Kernphysik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-22954
E-Mail: schland@uni-mainz.de
http://www.kph.uni-mainz.de

Weiterführende Links:
http://www.prisma.uni-mainz.de (Exzellenzcluster PRISMA)

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie