Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erste Teilchenumläufe am Beschleuniger SuperKEKB

16.03.2016

Elektron-Positron-Kollisionen am „Next-Generation“-Teilchenbeschleuniger für 2017 geplant / Mainzer Physiker beteiligt am Detektorbau sowie der Auswertung zukünftiger Experimente

Bei der Konstruktion des Teilchenbeschleunigers SuperKEKB am japanischen Forschungszentrum KEK ist ein Meilenstein erreicht: Elektronen und Positronen kreisen erstmals in den beiden dafür vorgesehenen Speicherringen.


Aufbau des SuperKEKB-Beschleunigers mit dem Belle-II-Detektor

Abb./©: KEK

Nach verschiedenen Testläufen soll ab 2017 die Experimentierphase beginnen, in der die beiden Teilchenstrahlen zur Kollision gebracht werden. Eine wesentliche Fragestellung bei den Experimenten wird sein, warum die Antimaterie, die in ähnlicher Menge wie die uns umgebende Materie existieren sollte, im Universum weitestgehend verschwunden ist.

Mainzer Physiker sind an der Entwicklung des zugehörigen Detektors beteiligt, der die entstehenden Teilchen und ihre Zerfallsprodukte aufzeichnet. Zudem werden Physiker aus der Arbeitsgruppe von Univ.-Prof. Dr. Concettina Sfienti gemeinsam mit etwa 600 Wissenschaftlern aus 23 Ländern an der Auswertung der Experimente mitarbeiten.

Ebenso wie der Beschleuniger, der seinen Vorgänger KEKB ablöst und eine um das vierzigfache größere Kollisionsrate erlaubt, wird auch der verwendete Detektor Belle für die zu erwartenden extremen Anforderungen modernisiert. Der deutsche Beitrag zum neuen Detektor Belle II ist ein hochauflösender Spurdetektor im Herzen der Apparatur, der den Kollisionspunkt und die Spuren der erzeugten Teilchen sehr genau bestimmen kann: die Ungenauigkeit wird weniger als die Hälfte der Dicke eines menschlichen Haares betragen.

Die Expertise der Mainzer Physiker liegt dabei in der Software zur Überwachung des Detektors und der Ausleseelektronik. Mit dieser Software werden die Betriebsparameter des Detektors gesteuert und seine Leistungsfähigkeit wird kontinuierlich kontrolliert. Die hohe Kollisionsrate macht es zwar erforderlich, bis an die Grenze des Machbaren leistungsfähige und somit kostspielige Hardware einzusetzen, soll es im Gegenzug aber auch ermöglichen, selten auftretende Ereignisse zu registrieren.

„Das ist ein wichtiger Meilenstein in der Entwicklung von SuperKEKB – einem Beschleuniger, der eine vierzigmal höhere Luminosität erreichen wird als der stärkste Collider, der je gebaut wurde. Das Experiment wird uns den größten Datensatz von hochpräzise vermessenen Teilchenkollisionen liefern, der bisher produziert worden ist, und könnte zur Entdeckung neuer Teilchen führen“, so Concettina Sfienti, Professorin am Institut für Kernphysik der Johannes Gutenberg-Universität Mainz (JGU).

Zudem erhofft man sich, extrem selten vorkommende Ereignisse nachzuweisen, die in frühen Phasen unseres Universums stattgefunden haben könnten – und damit neue physikalische Gesetze jenseits des Standardmodells zu entdecken.


Weitere Informationen:
Univ.-Prof. Dr. Concettina Sfienti
Institut für Kernphysik
Johannes Gutenberg-Universität Mainz (JGU)
55099 Mainz
Tel. +49 6131 39-25841
E-Mail: sfienti@uni-mainz.de
http://www.concettinasfienti.com/

Weitere Links:
https://www.kek.jp/en/index.html (Forschungszentrum KEK)
http://www.kek.jp/en/NewsRoom/Release/20160302163000/ (Pressemitteilung des Forschungszentrums KEK zu den ersten Teilchenumläufen an SuperKEKB vom 2. März 2016)

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Auf dem Weg zur optischen Kernuhr
19.04.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Laser erzeugt Magnet – und radiert ihn wieder aus
18.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics