Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erste Radiobeobachtungen von Planeten-Scheibe: Objekt entstand offenbar ähnlich wie Sterne

19.05.2017

Erste Radiobeobachtungen des einsamen planetenartigen Objekts OTS44 zeigen eine staubige protoplanetare Scheibe ähnlich der eines jungen Sterns. Das ist unerwartet: Laut den herkömmlichen sollte ein so massearmes Objekt nicht so entstehen können wie ein Stern, also beim Kollaps einer Gaswolke. Offenbar sind sich Sterne und planetenartige Objekte ähnlicher als bisher angenommen. Das neue Ergebnis einer Gruppe um Amelia Bayo, zu der auch mehrere Astronomen des Max-Planck-Instituts für Astronomie gehören, ist am 18. Mai 2017 in den Astrophysical Journal Letters erschienen.

Neue Beobachtungen des einsamen planetenartigen Objekts OTS44 haben starke Hinweise darauf ergeben, dass dieses Objekt ähnlich entstanden ist wie herkömmliche Sterne oder Braune Zwerge – ein überraschender Umstand, der herkömmliche Modelle der Stern- und Planetenentstehung vor eine Herausforderung stellt. Für diese Beobachtungen hatte die Astronomengruppe unter der Leitung von Amelia Bayo, zu der auch Forscher des Max-Planck-Instituts für Astronomie gehören, das ALMA-Observatorium in Chile genutzt.


Künstlerische Darstellung der Gas- und Staubscheibe um das planetenartige Objekt OTS44. Erste Radiobeobachtungen sprechen dafür, dass OTS44 auf ähnliche Weise entstanden ist wie ein junger Stern.

Bild: Johan Olofsson (U Valparaiso & MPIA)

Die Beobachtungen erlauben die Abschätzung der Masse des Staubanteils in der Scheibe rund um OTS44. Mit dem Ergebnis reiht sich OTS44 ein bei Objekten wie Sternen und Braunen Zwergen (letztere sind "verhinderte Sterne", mit zu wenig Masse für langanhaltende Kernfusionsreaktionen ):

Alle diese Objekte haben offenbar bestimmte ähnliche Eigenschaften, darunter einen ähnlichen Zusammenhang zwischen der Masse des Staubs in der Scheibe und der Masse des Zentralobjekts. Das neue Ergebnis ergänzt bereits länger bekannte Ähnlichkeiten, insbesondere den Umstand, dass OTS44 nach wie vor wächst, indem es Materie von seiner Scheibe auf sich zieht – auch das eigentlich charakteristisch für junge Sterne.

Ähnlichkeiten mit Sternen und Braunen Zwergen

Insgesamt sprechen diese Befunde stark dafür, dass OTS44 in der gleichen Weise entstanden ist wie Sterne und Braune Zwerge, nämlich durch den Kollaps einer Gas- und Staubwolke. Den herkömmlichen Modellen nach sollten sich Objekte mit so geringer Masse wie OTS44 aber gar nicht auf diese Weise bilden können. Eine mögliche Alternative, nämlich die gleichzeitige Bildung mehrerer Objekte, von denen OTS44 nur eines ist, widerspricht den Beobachtungen, die keine solchen Begleiterobjekte in der Nähe von OTS44 zeigen.

Die Stärke der bei Millimeter-Wellenlängen empfangenen Strahlung weist auf die Anwesenheit von ungefähr millimetergroßen Staubkörnern hin. Auch das ist unerwartet. Unter den Bedingungen, wie sie in der Scheibe rund um ein astronomisches Objekt geringer Masse herrschen, sollte Staub sich eigentlich gar nicht zu solcher Größe (oder darüber hinaus) zusammenballen können.

Die Staubteilchen rund um OTS44 sind allerdings trotzdem am wachsen – und könnten sogar auf dem Wege sein, später einmal eine Art Mini-Mond des Objekts zu bilden; eine weitere Ähnlichkeit mit Sternen und ihren Planetensystemen.

Amelia Bayo (Universität Valparaiso), die Leiterin des Forschungsprojekts, sagt: "Je mehr wir über OTS44 wissen, umso größer wird seine Ähnlichkeit mit einem jungen Stern. Aber die Masse des Objekts ist so gering, dass sich OTS44 den gängigen Theorien zufolge gar nicht wie ein Stern hätte bilden dürfen!"

Thomas Henning vom Max-Planck-Institut für Astronomie ergänzt: "Es ist schon beeindruckend, dass wir mithilfe eines Observatoriums wie ALMA rund eine halbe Erdmasse an Staub rund um ein Objekt mit zehn Jupitermassen auf eine Entfernung von 500 Lichtjahren sehen können. Aber die neuen Daten zeigen uns auch die Grenzen unseres Wissens. Offenbar müssen wir über die Entstehung von astronomischen Objekten mit niedriger Masse noch viel lernen!"

Hintergrundinformationen

Die hier beschriebenen Ergebnisse wurden als A. Bayo et al., "First millimeter detection of the disk around a young, isolated, planetary-mass object" in der Ausgabe vom 18. Mai 2017 der Astrophysical Journal Letters veröffentlicht.

Die beteiligten MPIA-Wissenschaftler sind

Viki Joergens, Yao Liu (auch Purple Mountain Observatory, Nanjing, China), Johan Oloffson (auch Universidad de Valparaíso), Thomas Henning und Henrik Beuther

in Zusammenarbeit mit

Amelia Bayo (Erstautorin; Universidad de Valparaíso [UV]), Robert Brauer (Universität Kiel), Javier Arancibia (UV), Paola Pinilla (University of Arizona), Sebastian Wolf, Jan Philipp Ruge (beide Universität Kiel), Antonella Natta (Dublin Institute for Advanced Studies und INAF-Osservatorio Astrofisico di Arcetri), Katharine G. Johnson (University of Leeds), Mickael Bonnefoy (IPAG Grenoble), und Gael Chauvin (IPAG Grenoble und Unidad Mixta Internacional Franco-Chilena de Astronomía, Santiago).

Kontakt:

Thomas Henning (Koautor)
Max-Planck-Institut für Astronomie
henning@mpia.de
06221 528-200

Markus Pössel (Öffentlichkeitsarbeit)
Max-Planck-Institut für Astronomie
pr@mpia.de
06221 528-261

Weitere Informationen:

http://www.mpia.de/aktuelles/wissenschaft/2017-06-ots44-scheibe - Online-Version der Pressemitteilung mit Hintergrundinformationen und hochaufgelöstem Bild
http://iopscience.iop.org/article/10.3847/2041-8213/aa7046 - Link zum Fachartikel

Dr. Markus Pössel | Max-Planck-Institut für Astronomie

Weitere Berichte zu: Astronomie Braune Zwerge IPAG Kernfusionsreaktionen OTS44 Planeten-Scheibe Staub

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics