Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erste Messung des Magnetfelds von Wendelstein 7-X – es passt!

16.07.2015

Schneller als geplant konnte jetzt die Prüfung des Magnetfeldes in der Fusionsanlage Wendelstein 7-X abgeschlossen werden. Die im Max-Planck-Institut für Plasmaphysik (IPP) in Greifswald mit Spannung erwarteten Messungen zeigen: Die supraleitenden Magnetspulen, deren technischer Test erst letzte Woche beendet wurde, erzeugen das gewünschte Magnetfeld. Der magnetische Käfig für das viele Millionen Grad heiße Fusionsplasma hat die von den Physikern berechnete Gestalt. Ein wesentlicher Meilenstein der gerade laufenden Betriebsvorbereitungen ist damit erreicht. Noch in diesem Jahr soll Wendelstein 7-X das erste Plasma erzeugen.

Obwohl Wendelstein 7-X noch nicht in Betrieb ist, liefert das Experiment bereits die ersten wissenschaftlichen Resultate: Das Magnetfeld entspricht genau dem was nötig ist, um heiße Fusionsplasmen einzuschließen. Dies zeigen die ersten Messungen der Feldstruktur: „Wir haben schöne geschlossene Flussflächen“, freut sich der zuständige IPP-Bereichsleiter Prof. Dr. Thomas Sunn Pedersen.


Flussflächen-Diagnostik: Die Leuchtspur eines Elektronenstrahls auf seinem vielfachen Umlauf längs einer Feldlinie durch das Plasmagefäß kombiniert mit den Bildpunkten, die er auf einem fluor

Foto: IPP, Matthias Otte


Der Beweis: Der Fluoreszenzstab macht geschlossene, ineinander liegende magnetische Flächen sichtbar – der Magnetfeldkäfig für das Plasma ist so wie er sein soll

Foto: IPP, Matthias Otte

Wie baut man einen Magnetfeldkäfig für das Plasma? Die Fusionsforscher nutzen aus, dass die geladenen Plasmateilchen – Ionen und Elektronen – von elektromagnetischen Kräften auf engen Spiralbahnen um magnetische Feldlinien gehalten werden. Von einem geeignet geformten Feld wie auf Schienen geführt, können die schnellen Teilchen daher von den Wänden des Plasmagefäßes ferngehalten werden. Für einen „dichten“ Käfig müssen die Feldlinien im Zentrum des ringförmigen

Plasmagefäßes geschlossene, ineinander geschachtelte Ringflächen aufspannen – wie die ineinander liegenden Jahresringflächen eines Baumstamms. So werden nach außen weisende Feldlinien vermieden, die die Plasmateilchen auf die Wände führen würden. Die nötigen hohen Plasmatemperaturen wären sonst unerreichbar.

„Nachdem die Flussflächen-Diagnostik in Betrieb genommen wurde, konnten wir sofort erste magnetische Flächen sehen“, berichtet Dr. Matthias Otte, der für das Messverfahren verantwortlich ist: „Unsere Aufnahmen zeigen deutlich, wie die Magnetfeldlinien in vielen toroidalen Umläufen geschlossene Flächen aufbauen“.

Mit der Flussflächen-Diagnostik lässt sich die Struktur des Feldes genau vermessen. Dazu wird ein dünner Elektronenstrahl eingeschossen, der sich entlang einer Feldlinie in Ringbahnen durch das leergepumpte Plasmagefäß bewegt. Er hinterlässt dabei eine Leuchtspur, die durch Stöße der Elektronen mit Restgas im Gefäß entsteht. Schwenkt man nun noch einen fluoreszierenden Stab durch den Gefäßquerschnitt, entstehen zusätzlich Leuchtflecke, wenn der Elektronenstrahl den Stab trifft. In der Kameraaufzeichnung wird so nach und nach der gesamte Querschnitt des magnetischen Feldes sichtbar.

Während einer rund 60 Sekunden dauernden Einzelmessung läuft der Elektronenstrahl auf „seiner“ Feldlinie viele Male im ringförmigen Plasmagefäß um und legt dabei einige Kilometer zurück. Die verschraubte Feldlinie führt ihn nach jedem Umlauf leicht versetzt durch die Schnittebene, durch die der Stab schwenkt. Aus den Leuchtpunkten auf dem Stab setzt sich nach und nach das Bild des Feldquerschnitts zusammen. Und tatsächlich: In gepunkteten Linien zeigten sich die gewünschten ineinander geschachtelten Flussflächen. „Nach der aufwändigen Montagezeit sind wir jetzt sehr glücklich über die guten Messergebnisse“, sagt Professor Sunn Pedersen: „Die Flussflächen sehen so aus, wie wir sie haben wollten“.

Hintergrund

Ziel der Fusionsforschung ist es, ein klima- und umweltfreundliches Kraftwerk zu entwickeln, das ähnlich wie die Sonne aus der Verschmelzung von Atomkernen Energie gewinnt. Um das Fusionsfeuer zu zünden, muss in einem späteren Kraftwerk der Brennstoff – ein Wasserstoffplasma – in Magnetfeldern eingeschlossen und auf Temperaturen über 100 Millionen Grad aufgeheizt werden. Wendelstein 7-X, die nach der Fertigstellung weltweit größte Fusionsanlage vom Typ Stellarator, wird noch keine Energie erzeugen, aber die Kraftwerkseignung dieses Bautyps untersuchen. Mit bis zu 30 Minuten langen Entladungen soll sie seine wesentliche Eigenschaft vorführen, die Fähigkeit zum Dauerbetrieb.

Ein Ring aus 50 supraleitenden, etwa 3,5 Meter hohen Magnetspulen ist das Kernstück der Anlage. Durch flüssiges Helium auf Supraleitungstemperatur nahe dem absoluten Nullpunkt abgekühlt, verbrauchen sie nach dem Einschalten kaum Energie. Ihre speziellen Formen sind das Ergebnis ausgefeilter Optimierungsrechnungen: Sie sollen einen besonders wärmeisolierenden magnetischen Käfig für das Plasma aufbauen.

Im Mai 2014 wurde die Montage von Wendelstein 7-X termingerecht abgeschlossen; seit gut einem Jahr laufen die Betriebsvorbereitungen. Nacheinander wird die Funktion aller technischen Systeme geprüft. Von Ende April bis Anfang Juli 2015 waren die Magnetspulen an der Reihe. Nachdem die Funktionsfähigkeit dieser zentralen Anlagenkomponente sichergestellt war, folgte das Ausmessen der magnetischen Flächen. Nun steht noch die Einstellung der computergestützten Datenerfassung für den Experimentierbetrieb aus, in der Peripherie der Anlage sind die Apparaturen zum Beobachten und zum Aufheizen des Plasmas zu vervollständigen. Das Ziel: Noch in diesem Jahr soll Wendelstein 7-X das erste Plasma erzeugen.

Weitere Informationen:

http://www.ipp.mpg.de/de/aktuelles/presse/pi/2015/07_15

Isabella Milch | Max-Planck-Institut für Plasmaphysik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie