Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erste Messung des Magnetfelds von Wendelstein 7-X – es passt!

16.07.2015

Schneller als geplant konnte jetzt die Prüfung des Magnetfeldes in der Fusionsanlage Wendelstein 7-X abgeschlossen werden. Die im Max-Planck-Institut für Plasmaphysik (IPP) in Greifswald mit Spannung erwarteten Messungen zeigen: Die supraleitenden Magnetspulen, deren technischer Test erst letzte Woche beendet wurde, erzeugen das gewünschte Magnetfeld. Der magnetische Käfig für das viele Millionen Grad heiße Fusionsplasma hat die von den Physikern berechnete Gestalt. Ein wesentlicher Meilenstein der gerade laufenden Betriebsvorbereitungen ist damit erreicht. Noch in diesem Jahr soll Wendelstein 7-X das erste Plasma erzeugen.

Obwohl Wendelstein 7-X noch nicht in Betrieb ist, liefert das Experiment bereits die ersten wissenschaftlichen Resultate: Das Magnetfeld entspricht genau dem was nötig ist, um heiße Fusionsplasmen einzuschließen. Dies zeigen die ersten Messungen der Feldstruktur: „Wir haben schöne geschlossene Flussflächen“, freut sich der zuständige IPP-Bereichsleiter Prof. Dr. Thomas Sunn Pedersen.


Flussflächen-Diagnostik: Die Leuchtspur eines Elektronenstrahls auf seinem vielfachen Umlauf längs einer Feldlinie durch das Plasmagefäß kombiniert mit den Bildpunkten, die er auf einem fluor

Foto: IPP, Matthias Otte


Der Beweis: Der Fluoreszenzstab macht geschlossene, ineinander liegende magnetische Flächen sichtbar – der Magnetfeldkäfig für das Plasma ist so wie er sein soll

Foto: IPP, Matthias Otte

Wie baut man einen Magnetfeldkäfig für das Plasma? Die Fusionsforscher nutzen aus, dass die geladenen Plasmateilchen – Ionen und Elektronen – von elektromagnetischen Kräften auf engen Spiralbahnen um magnetische Feldlinien gehalten werden. Von einem geeignet geformten Feld wie auf Schienen geführt, können die schnellen Teilchen daher von den Wänden des Plasmagefäßes ferngehalten werden. Für einen „dichten“ Käfig müssen die Feldlinien im Zentrum des ringförmigen

Plasmagefäßes geschlossene, ineinander geschachtelte Ringflächen aufspannen – wie die ineinander liegenden Jahresringflächen eines Baumstamms. So werden nach außen weisende Feldlinien vermieden, die die Plasmateilchen auf die Wände führen würden. Die nötigen hohen Plasmatemperaturen wären sonst unerreichbar.

„Nachdem die Flussflächen-Diagnostik in Betrieb genommen wurde, konnten wir sofort erste magnetische Flächen sehen“, berichtet Dr. Matthias Otte, der für das Messverfahren verantwortlich ist: „Unsere Aufnahmen zeigen deutlich, wie die Magnetfeldlinien in vielen toroidalen Umläufen geschlossene Flächen aufbauen“.

Mit der Flussflächen-Diagnostik lässt sich die Struktur des Feldes genau vermessen. Dazu wird ein dünner Elektronenstrahl eingeschossen, der sich entlang einer Feldlinie in Ringbahnen durch das leergepumpte Plasmagefäß bewegt. Er hinterlässt dabei eine Leuchtspur, die durch Stöße der Elektronen mit Restgas im Gefäß entsteht. Schwenkt man nun noch einen fluoreszierenden Stab durch den Gefäßquerschnitt, entstehen zusätzlich Leuchtflecke, wenn der Elektronenstrahl den Stab trifft. In der Kameraaufzeichnung wird so nach und nach der gesamte Querschnitt des magnetischen Feldes sichtbar.

Während einer rund 60 Sekunden dauernden Einzelmessung läuft der Elektronenstrahl auf „seiner“ Feldlinie viele Male im ringförmigen Plasmagefäß um und legt dabei einige Kilometer zurück. Die verschraubte Feldlinie führt ihn nach jedem Umlauf leicht versetzt durch die Schnittebene, durch die der Stab schwenkt. Aus den Leuchtpunkten auf dem Stab setzt sich nach und nach das Bild des Feldquerschnitts zusammen. Und tatsächlich: In gepunkteten Linien zeigten sich die gewünschten ineinander geschachtelten Flussflächen. „Nach der aufwändigen Montagezeit sind wir jetzt sehr glücklich über die guten Messergebnisse“, sagt Professor Sunn Pedersen: „Die Flussflächen sehen so aus, wie wir sie haben wollten“.

Hintergrund

Ziel der Fusionsforschung ist es, ein klima- und umweltfreundliches Kraftwerk zu entwickeln, das ähnlich wie die Sonne aus der Verschmelzung von Atomkernen Energie gewinnt. Um das Fusionsfeuer zu zünden, muss in einem späteren Kraftwerk der Brennstoff – ein Wasserstoffplasma – in Magnetfeldern eingeschlossen und auf Temperaturen über 100 Millionen Grad aufgeheizt werden. Wendelstein 7-X, die nach der Fertigstellung weltweit größte Fusionsanlage vom Typ Stellarator, wird noch keine Energie erzeugen, aber die Kraftwerkseignung dieses Bautyps untersuchen. Mit bis zu 30 Minuten langen Entladungen soll sie seine wesentliche Eigenschaft vorführen, die Fähigkeit zum Dauerbetrieb.

Ein Ring aus 50 supraleitenden, etwa 3,5 Meter hohen Magnetspulen ist das Kernstück der Anlage. Durch flüssiges Helium auf Supraleitungstemperatur nahe dem absoluten Nullpunkt abgekühlt, verbrauchen sie nach dem Einschalten kaum Energie. Ihre speziellen Formen sind das Ergebnis ausgefeilter Optimierungsrechnungen: Sie sollen einen besonders wärmeisolierenden magnetischen Käfig für das Plasma aufbauen.

Im Mai 2014 wurde die Montage von Wendelstein 7-X termingerecht abgeschlossen; seit gut einem Jahr laufen die Betriebsvorbereitungen. Nacheinander wird die Funktion aller technischen Systeme geprüft. Von Ende April bis Anfang Juli 2015 waren die Magnetspulen an der Reihe. Nachdem die Funktionsfähigkeit dieser zentralen Anlagenkomponente sichergestellt war, folgte das Ausmessen der magnetischen Flächen. Nun steht noch die Einstellung der computergestützten Datenerfassung für den Experimentierbetrieb aus, in der Peripherie der Anlage sind die Apparaturen zum Beobachten und zum Aufheizen des Plasmas zu vervollständigen. Das Ziel: Noch in diesem Jahr soll Wendelstein 7-X das erste Plasma erzeugen.

Weitere Informationen:

http://www.ipp.mpg.de/de/aktuelles/presse/pi/2015/07_15

Isabella Milch | Max-Planck-Institut für Plasmaphysik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften