Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entdeckung eines zeitaufgelösten Supernova-Signals in Mikrofossilen der Erde

10.08.2016

Sternexplosions-Reste eine Million Jahre lang nachweisbar

Wissenschaftlern der Technischen Universität München (TUM) ist es mit Hilfe von versteinerten Nanokristallen aus Bohrproben des Pazifischen Ozeans erstmals gelungen, den Verlauf der Anlagerung von Spuren einer Supernova auf der Erde zeitlich zu analysieren. Die Physiker um Prof. Shawn Bishop konnten die Supernova-Signale erstmals zu einem Zeitpunkt vor rund 2,7 Millionen Jahren nachweisen. Dann zog unser Sonnensystem für den Zeitraum von rund einer Million Jahre durch die Supernova-Reste, wie die Untersuchungen der Forscher zeigen.


Blick auf den Sternenhimmel. Wenn ein massereicher Stern sein Leben beendet, kommt es zu einer Supernova.

Bild: kaalimies / fotolia

Quelle: TU München

Wenn massereiche Sterne, die mehr als die zehnfache Masse unserer Sonne besitzen, ihren Brennstoffvorrat verbraucht haben, kollabieren sie unter ihrer Schwerkraft und enden in einer so genannten Kernkollaps-Supernova. Dabei schleudern sie mit großer Energie Materie in ihre Umgebung. Wenn eine solche Sternexplosion sich in ausreichender Nähe zum Sonnensystem ereignet, sollte sie daher auf der Erde Spuren von bestimmten radioaktiven Elementen hinterlassen.

Unter den Elementarten, die in solchen massereichen Sternen produziert werden, spielt das Radioisotop Eisen-60 eine besondere Rolle, denn dieses kommt auf der Erde natürlicherweise nicht vor. Bei Fe-60, das auf der Erde gefunden wird, handelt es sich daher um Sternexplosions-Material, verursacht durch eine Supernova, die in der Nähe unseres Sonnensystems stattgefunden hat.

Funde auch auf dem Mond

Eine erhöhte Eisen-60-Konzentration wurde in früheren Untersuchungen bereits in Proben einer etwa zwei Millionen Jahre alten Eisen-Mangan-Tiefseekruste aus dem Pazifischen Ozean festgestellt. Außerdem entdeckten TUM-Wissenschaftler erst kürzlich Supernova-Eisen in Proben von Mond-Gestein. Beide Funde wurden einer Supernova zugeschrieben. Der Zeitverlauf der Anlagerungen konnte bisher allerdings nicht genau analysiert werden, weil die untersuchte Eisen-Mangan-Tiefseekruste sehr langsam anwächst. Mond-Material wiederum lässt sich zeitlich nicht einordnen, weil dort aufgrund der fehlenden Atmosphäre keine Sedimentation stattfindet.

Nun ist es Physikern um Shawn Bishop, Professor für Nukleare Astrophysik an der TUM, zum ersten Mal gelungen, den zeitlichen Verlauf der Supernova-Anlagerungen anhand von Mikrofossilen in zwei Bohrproben aus dem Pazifischen Ozean befanden zu verfolgen. Die Forscher konnten zeigen, dass in ihren Proben vor rund 2,7 Millionen Jahren erstmals Supernova-Eisen nachweisbar ist. Die erhöhte Fe-60-Konzentration erreichte vor rund 2,2 Millionen Jahren ihren höchsten Wert und verschwand vor rund 1,5 Millionen Jahren wieder.

„Offenbar ist unser Sonnensystem für die Dauer von gut eine Million Jahre durch ein Gebiet mit Sternexplosions-Resten gezogen und hat während dieser Phase das Eisen-60 eingesammelt“, sagt Bishop, der auch Wissenschaftler des Exzellenzclusters Universe ist.

Proben mit besonderen Eigenschaften

Um die zeitliche Struktur der Fe-60-Einträge so genau bestimmen zu können, benötigten die Forscher geologische Proben von besonderer Güte: Das Gesteinsmaterial muss Schichten besitzen, die sich besonders gut voneinander abheben. Außerdem muss darin besonders viel Eisen-60 gespeichert und bewahrt worden sein, so dass es heute - abgesehen vom radioaktiven Zerfall des Fe-60 – noch nahezu so vorzufinden ist, wie zum Zeitpunkt des Eintrags auf der Erde.

Untersuchung am Tandem-Beschleuniger in Garching

Diese Bedingungen sind in den Meeressedimenten gegeben, die in dieser Untersuchung benutzt wurden. Zum Zeitpunkt der Anlagerung haben im Ozeansediment lebende, Eisenliebende Bakterien das Fe-60 in Ketten von Magnetit-Nanokristallen (Fe3O4) eingebaut. Nach dem Zelltod der Bakterien sind diese zu Mikrofossilen versteinert. Die Sedimente sind mit einer sehr langsamen Sedimentationsrate gewachsen und haben auf diese Weise den zeitlichen Verlauf des Supernova-Signals gespeichert.

„Dennoch ist auch in diesen Magnetit-Kristallen die Fe-60-Konzentration so gering, dass sie nur mit Hilfe der ultrasensitiven Beschleuniger-Massenspektroskopie überhaupt nachweisbar ist“, sagt Dr. Peter Ludwig, Wissenschaftler in der Gruppe von Bishop. Am Tandem-Beschleuniger am Maier-Leibniz-Laboratorium in Garching konnten die Physiker die Empfindlichkeit der Methode zusätzlich so weit steigern, dass die Entdeckung möglich war.

Supernova mindestens 300 Lichtjahre entfernt

Es wird vermutet, dass die nun nachgewiesene Sternexplosion dem Sternverband Scorpius-Centaurus OB entstammt, der, vor rund 2,3 Millionen Jahren mit etwa 300 Lichtjahren seine geringste Entfernung zu unserem Sonnensystem aufwies. In den vergangenen 10 bis 15 Millionen Jahren haben sich in diesem Sternverband rund 15 bis 20 Supernovae ereignet. Diese Serie von gewaltigen Sternexplosionen hat einen weitgehend materiefreien Hohlraum im interstellaren Medium eines galaktischen Arms der Milchstraße erzeugt. Astronomen nennen diesen Hohlraum, in dem sich auch unser Sonnensystem befindet, die Lokale Blase.

Neben den TUM-Physikern waren an der Entdeckung beteiligt: Wissenschaftler der Zentralanstalt für Meteorologie und Geodynamik, Fachgebiet Geomagnetismus und Gravimetrie, Wien, des Chemie-Departments der TUM, Fachgebiet Elektronenmikroskopie, sowie Forscher des Helmholtz-Instituts für Ressourcentechnologie Freiberg, das zum Helmholtz-Zentrum Dresden-Rossendorf gehört.

Die Forschungsarbeit wurde finanziell unterstützt von der Deutschen Forschungsgemeinschaft und vom Exzellenzcluster Universe.

Weitere Informationen:

http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/33317

Dr. Ulrich Marsch | Technische Universität München

Weitere Berichte zu: Bakterien Entdeckung Hohlraum Sonnensystem Sternexplosion Supernova TUM

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Bilder magnetischer Strukturen auf der Nano-Skala
20.04.2018 | Georg-August-Universität Göttingen

nachricht Licht macht Ionen Beine
20.04.2018 | Max-Planck-Institut für Festkörperforschung, Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics