Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Elektronenmikroskop mit dem Extra-Dreh

05.11.2012
Vortex-Strahlen, die wie ein Wirbelsturm rotieren, bieten völlig neue Möglichkeiten für die Elektronenmikroskopie. An der TU Wien wurden eine Möglichkeit entdeckt, extrem intensive Vortexstrahlen zu erzeugen.

Elektronenmikroskope sind heute ein unverzichtbares Werkzeug, ganz besonders in der Materialwissenschaft. An der TU Wien wird an Elektronenstrahlen geforscht, die eine innere Rotation haben, ähnlich wie ein Wirbelsturm.


Der Elektronenstrahl passiert die Blende und erhält dadurch einen Drehimpuls.

TU Wien

Mit Hilfe dieser sogenannten „Vortex-Strahlen“ können nicht nur Objekte abgebildet, sondern auch materialspezifische Eigenschaften untersucht werden – mit einer Präzision im Nanometerbereich. Ein neuer Forschungsdurchbruch ermöglicht nun viel intensivere Vortexstrahlen als je zuvor.

Quanten-Tornado: Das Elektron als Welle

In einem Tornado drehen sich die einzelnen Luftteilchen zwar nicht unbedingt um die eigene Achse, aber der Luftsog insgesamt hat eine mächtige Rotation. Ganz ähnlich verhalten sich die rotierenden Elektronenstrahlen, die an der TU Wien hergestellt werden. Um sie zu verstehen, darf man sich die Elektronen nicht bloß als winzige Punkte oder Kügelchen vorstellen, denn die könnten sich höchstens um ihre eigene Achse drehen. Die Vortex-Strahlen hingegen lassen sich nur quantenphysikalisch erklären: Die Elektronen verhalten sich wie eine Welle, und diese Quanten-Welle kann rotieren, wie ein Tornado oder wie die Wasserströmung hinter einer Schiffsschraube.

„Nachdem der Vortex-Strahl einen Drehimpuls trägt, kann er auch Drehimpuls auf das Objekt übertragen, auf das er trifft“, erklärt Prof. Peter Schattschneider vom Institut für Festkörperphysik der TU Wien. Der Drehimpuls der Elektronen in einem Festkörper ist eng mit seinen magnetischen Eigenschaften verknüpft. Für die Materialwissenschaft ist es daher ein ungeheurer Vorteil, durch die neuartigen Elektronenstrahlen auch Aussagen über Drehimpuls-Zustände treffen zu können.

Strahlen drehen – mit Blenden und Masken

Peter Schattschneider und Michael Stöger-Pollach (USTEM, TU Wien) arbeiten gemeinsam mit einer Forschungsgruppe aus Antwerpen daran, möglichst intensive und sauber kontrollierbare Vortex-Strahlen in einem Transmissions-Elektronenmikroskop zu erzeugen. Bereits vor zwei Jahren gab es erste Erfolge: Damals wurde der Elektronenstrahl durch eine winzige gitterartige Maske hindurchgeschossen, wodurch er sich in drei Teilstrahlen aufspalten ließ: Einen rechtsdrehenden, einen linksdrehenden und einen Strahl ohne Rotation.

Nun wurde eine neue, noch viel mächtigere Methode entwickelt: Die Forscher verwenden eine Blende, die zur Hälfte von einer Siliziumnitrid-Schicht bedeckt wird. Diese Schicht ist so dünn, dass die Elektronen sie fast absorptionsfrei durchdringen können, aber geeignet phasenverschoben werden. „Nach Fokussierung durch eine speziell abgestimmte astigmatische Linse erhält man einen einzelnen Vortexstrahl“, erklärt Michael Stöger-Pollach.

Dieser Strahl ist um eine Größenordnung intensiver als die Vortex-Strahlen, die man bisher erzeugen konnte. „Erstens spalten wir den Strahl nicht in drei Teile auf, wie bei der Gittermaske, sondern der gesamte Elektronenstrom wird in Rotation versetzt. Zweitens hatte die Gittermaske den Nachteil, die Hälfte der Elektronen zu blockieren – die neue Spezialblende tut das nicht“, sagt Stöger-Pollach.

Durch die neue Technik lassen sich nun auch rechts- und linksdrehende Strahlen zuverlässig unterscheiden – das war bisher nur schwer möglich. Addiert man nun nämlich zu rechts- und linksdrehenden Strahlen jeweils einen bestimmten Drehimpuls hinzu, wird die Drehung des einen Strahls verstärkt, die des anderen Strahles nimmt ab.

Elektronenmikroskop mit Twist

Die neue Technologie wurde von dem Forschungsteam kürzlich im Fachjournal „Physical Review Letters“ präsentiert. In Zukunft soll die Methode für die Materialforschung eingesetzt werden. Besonders bei neu entwickelten Designer-Materialien stehen magnetische Eigenschaften oft im Zentrum der Aufmerksamkeit. „Ein Transmissions-Elektronenmikroskop mit Vortex-Strahlen ließe uns diese Eigenschaften nanometergenau untersuchen“, meint Peter Schattschneider.
Auch exotischere Anwendungen von Vortex-Strahlen sind denkbar: Im Prinzip kann man mit solchen drehimpulstragenden Strahlen Objekte in Rotation versetzen – etwa einzelne Moleküle. Vortex-Strahlen könnten daher auch neue Türen in der Nanotechnologie öffnen.

Rückfragehinweis:

Prof. Peter Schattschneider
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8, 1040 Wien
T: +43-1-58801-13722
peter.schattschneider@tuwien.ac.at

Dr. Michael Stöger-Pollach
Service-Einrichtung für Transmissions-Elektronenmikroskopie (USTEM)
Technische Universität Wien
Wiedner Hauptstraße 8, 1040 Wien
T: +43-1-58801-45204
michael.stoeger-pollach@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at
http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2012/ustem/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Gravitationswellen als Sensor für Dunkle Materie
06.12.2016 | Max-Planck-Institut für Kernphysik

nachricht Neue Perspektiven durch gespiegelte Systeme
05.12.2016 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weiterbildung zu statistischen Methoden in der Versuchsplanung und -auswertung

06.12.2016 | Seminare Workshops

Bund fördert Entwicklung sicherer Schnellladetechnik für Hochleistungsbatterien mit 2,5 Millionen

06.12.2016 | Förderungen Preise

Innovationen für eine nachhaltige Forstwirtschaft

06.12.2016 | Agrar- Forstwissenschaften