Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Elektronenmikroskop mit dem Extra-Dreh

05.11.2012
Vortex-Strahlen, die wie ein Wirbelsturm rotieren, bieten völlig neue Möglichkeiten für die Elektronenmikroskopie. An der TU Wien wurden eine Möglichkeit entdeckt, extrem intensive Vortexstrahlen zu erzeugen.

Elektronenmikroskope sind heute ein unverzichtbares Werkzeug, ganz besonders in der Materialwissenschaft. An der TU Wien wird an Elektronenstrahlen geforscht, die eine innere Rotation haben, ähnlich wie ein Wirbelsturm.


Der Elektronenstrahl passiert die Blende und erhält dadurch einen Drehimpuls.

TU Wien

Mit Hilfe dieser sogenannten „Vortex-Strahlen“ können nicht nur Objekte abgebildet, sondern auch materialspezifische Eigenschaften untersucht werden – mit einer Präzision im Nanometerbereich. Ein neuer Forschungsdurchbruch ermöglicht nun viel intensivere Vortexstrahlen als je zuvor.

Quanten-Tornado: Das Elektron als Welle

In einem Tornado drehen sich die einzelnen Luftteilchen zwar nicht unbedingt um die eigene Achse, aber der Luftsog insgesamt hat eine mächtige Rotation. Ganz ähnlich verhalten sich die rotierenden Elektronenstrahlen, die an der TU Wien hergestellt werden. Um sie zu verstehen, darf man sich die Elektronen nicht bloß als winzige Punkte oder Kügelchen vorstellen, denn die könnten sich höchstens um ihre eigene Achse drehen. Die Vortex-Strahlen hingegen lassen sich nur quantenphysikalisch erklären: Die Elektronen verhalten sich wie eine Welle, und diese Quanten-Welle kann rotieren, wie ein Tornado oder wie die Wasserströmung hinter einer Schiffsschraube.

„Nachdem der Vortex-Strahl einen Drehimpuls trägt, kann er auch Drehimpuls auf das Objekt übertragen, auf das er trifft“, erklärt Prof. Peter Schattschneider vom Institut für Festkörperphysik der TU Wien. Der Drehimpuls der Elektronen in einem Festkörper ist eng mit seinen magnetischen Eigenschaften verknüpft. Für die Materialwissenschaft ist es daher ein ungeheurer Vorteil, durch die neuartigen Elektronenstrahlen auch Aussagen über Drehimpuls-Zustände treffen zu können.

Strahlen drehen – mit Blenden und Masken

Peter Schattschneider und Michael Stöger-Pollach (USTEM, TU Wien) arbeiten gemeinsam mit einer Forschungsgruppe aus Antwerpen daran, möglichst intensive und sauber kontrollierbare Vortex-Strahlen in einem Transmissions-Elektronenmikroskop zu erzeugen. Bereits vor zwei Jahren gab es erste Erfolge: Damals wurde der Elektronenstrahl durch eine winzige gitterartige Maske hindurchgeschossen, wodurch er sich in drei Teilstrahlen aufspalten ließ: Einen rechtsdrehenden, einen linksdrehenden und einen Strahl ohne Rotation.

Nun wurde eine neue, noch viel mächtigere Methode entwickelt: Die Forscher verwenden eine Blende, die zur Hälfte von einer Siliziumnitrid-Schicht bedeckt wird. Diese Schicht ist so dünn, dass die Elektronen sie fast absorptionsfrei durchdringen können, aber geeignet phasenverschoben werden. „Nach Fokussierung durch eine speziell abgestimmte astigmatische Linse erhält man einen einzelnen Vortexstrahl“, erklärt Michael Stöger-Pollach.

Dieser Strahl ist um eine Größenordnung intensiver als die Vortex-Strahlen, die man bisher erzeugen konnte. „Erstens spalten wir den Strahl nicht in drei Teile auf, wie bei der Gittermaske, sondern der gesamte Elektronenstrom wird in Rotation versetzt. Zweitens hatte die Gittermaske den Nachteil, die Hälfte der Elektronen zu blockieren – die neue Spezialblende tut das nicht“, sagt Stöger-Pollach.

Durch die neue Technik lassen sich nun auch rechts- und linksdrehende Strahlen zuverlässig unterscheiden – das war bisher nur schwer möglich. Addiert man nun nämlich zu rechts- und linksdrehenden Strahlen jeweils einen bestimmten Drehimpuls hinzu, wird die Drehung des einen Strahls verstärkt, die des anderen Strahles nimmt ab.

Elektronenmikroskop mit Twist

Die neue Technologie wurde von dem Forschungsteam kürzlich im Fachjournal „Physical Review Letters“ präsentiert. In Zukunft soll die Methode für die Materialforschung eingesetzt werden. Besonders bei neu entwickelten Designer-Materialien stehen magnetische Eigenschaften oft im Zentrum der Aufmerksamkeit. „Ein Transmissions-Elektronenmikroskop mit Vortex-Strahlen ließe uns diese Eigenschaften nanometergenau untersuchen“, meint Peter Schattschneider.
Auch exotischere Anwendungen von Vortex-Strahlen sind denkbar: Im Prinzip kann man mit solchen drehimpulstragenden Strahlen Objekte in Rotation versetzen – etwa einzelne Moleküle. Vortex-Strahlen könnten daher auch neue Türen in der Nanotechnologie öffnen.

Rückfragehinweis:

Prof. Peter Schattschneider
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8, 1040 Wien
T: +43-1-58801-13722
peter.schattschneider@tuwien.ac.at

Dr. Michael Stöger-Pollach
Service-Einrichtung für Transmissions-Elektronenmikroskopie (USTEM)
Technische Universität Wien
Wiedner Hauptstraße 8, 1040 Wien
T: +43-1-58801-45204
michael.stoeger-pollach@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at
http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2012/ustem/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Quantenmechanik ist komplex genug – vorerst …
21.04.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

25.04.2017 | Biowissenschaften Chemie

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungsnachrichten

Phoenix Contact übernimmt Spezialisten für Netzleittechnik

24.04.2017 | Unternehmensmeldung