Wie Elektronen schwingende Atomkerne überholen – Der Röntgenfilm

(A) Einheitszelle des KDP-Kristalls [gelbe Kugeln: Phosphoratome (P), rosa: Kalium (K), rot: Sauerstoff (O), weiß: Wasserstoff. (B) Elektronendichte „Landkarte“ in dem eingezeichneten Rechteck vor der Laseranregung. Die schwarzen Linien deuten die Schachteln für verschiedene Atome an, in denen die Ladungsmenge und der Schwerpunkt der Ladungswolke gemessen werden. (C) und (D) Änderung der Ladungsdichte nach Laseranregung (rot: Ladungszunahme, blau: Abnahme). (E) Positionen der Atome in dieser Ebene und der Ladungsaustausch zwischen Phosphor und Sauerstoff. Die Elektronenwolke des Kaliumatoms zeigt Verzerrungen zwischen einer Zigarren- bzw. Pfannkuchen-Form. Abb. MBI

Ein Kristall besteht aus einer regelmäßigen Anordnung von Atomen im Raum, auch Kristallgitter genannt, welches mit Hilfe der gegenseitigen, elektrostatischen Anziehungskräfte der Elektronenwolken benachbarter Atome zusammen gehalten wird. Die meisten der Elektronen sind stark an einen individuellen, positiv geladenen Atomkern gebunden. Die äußersten Elektronen eines Atoms heißen Valenzelektronen und bauen die Bindung zu den Nachbaratomen auf. Diese Bindungen bestimmen den Atomabstand im Kristall sowie wesentliche Eigenschaften, wie etwa seine elektrische Leitfähigkeit oder mechanische Stabilität.

Die Atome in einem Kristallgitter sind nicht etwa in Ruhe, sondern schwingen um ihre jeweilige Gleichgewichtsposition. Die räumliche Auslenkung der Bewegung der Atomkerne zusammen mit ihren Elektronen in den inneren Schalen beträgt typischerweise nur ein Prozent des Abstandes zwischen den Atomen. Wie sich die äußeren Valenzelektronen während dieser Gitterschwingung verhalten, war bislang nicht klar und die Größe ihrer Auslenkung gänzlich unbekannt. Eine direkte Messung dieser Bewegung in Echtzeit ist sehr wichtig für ein grundlegendes Verständnis der statischen und dynamischen elektrischen Eigenschaften des Kristalls.

Um diese offene Frage zu klären, haben Flavio Zamponi, Philip Rothhardt, Johannes Stingl, Michael Wörner und Thomas Elsässer ein Röntgen-Reaktionsmikroskop gebaut, das eine Aufnahme der Elektronenbewegung in Echtzeit in einem Kristall erlaubt. Wie sie in der neuesten Ausgabe der Fachzeitschrift PNAS (doi/10.1073/pnas.1108206109) berichten, werden Gitterschwingungen in einem Kaliumdihydrogenphosphat (KDP)-Kristall mit Hilfe eines Laserblitzes angestoßen, der nur 50 Femtosekunden (1 fs = 10 hoch -15 Sekunden) dauert. Die momentanen Positionen der Atome und Elektronen werden dabei mit hoher räumlicher Auflösung mithilfe von 100 fs langen Röntgenblitzen gemessen, welche von den schwingenden Atomen gebeugt werden. Röntgenfotos, die zu verschiedenen Zeiten nach dem Start der Schwingung geschossen werden, bilden zusammen den gewünschten Röntgenfilm.

Es war eine große Überraschung für die Forscher aus Berlin, dass nach Anregung einer speziellen Schwingung in KDP, der sogenannten „weichen“ Schwingung (engl. soft mode), die äußeren Valenzelektronen sich um eine 30-mal größere Entfernung während der Schwingung bewegten als die Atomkerne und deren Elektronen in den inneren Schalen. Dieses Verhalten kann man direkt in den Elektronendichte-„Landkarten“ in Bild 1 beobachten. Währende der soft-mode Oszillation bewegt sich ein ursprünglich auf dem Phosphor (P)-Atom sitzendes Elektron zu einem seiner Sauerstoff (O)-Nachbarn (P-O Bindungslänge: 160 Pikometer (10 hoch -12 m)) und kehrt nach einer halben Oszillationsperiode wieder zum P-Atom zurück. Überraschenderweise bewegen sich dabei die beteiligten Atome nur wenige Pikometer, im krassen Gegensatz zum Lehrbuchwissen, nach dem man eine gemeinsame Bewegung aller Elektronen eines Atoms mit seinem Kern erwartet. Die überraschend weite Bewegung der Valenzelektronen kann man mit Hilfe der elektrostatischen Kräfte verstehen, die das schwingende Ionenkristallgitter während der soft-mode Oszillation auf die Elektronen ausübt. In den 1960er Jahren wurden schon Theorien entwickelt, die ein solches Verhalten vorhersagten. Jetzt ist endlich der experimentelle Nachweis gelungen. In dem begefügten Film sieht man die Iso-Elektronendichte-Oberfläche des Kaliumions und des Phosphations während einer soft-mode Oszillation in KDP.

Die neu entwickelte Pulvermethode der Femtosekunden-Röntgenbeugung kann auf viele andere Systeme angewendet werden, um ultraschnelle chemische und physikalische Strukturänderungen abzubilden.

Video
http://www.fv-berlin.de/news/videos/roentgenfilm/view
Originalarbeit:
doi/10.1073/pnas.1108206109

Media Contact

Christine Vollgraf Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer