Elektronen finden immer einen (Quanten-) Weg

Erstmals im Experiment nachgewiesen: Transportprozess von Elektronen aus einem Supraleiter (S) durch einen Quantenpunkt in einen Normalleiter (N). Illustration: Universität Basel, Departement Physik

Transporteigenschaften wie etwa die elektrische Leitfähigkeit spielen für die technische Anwendung von neuartigen Materialien und elektronischen Bauteilen eine wichtige Rolle. Völlig neue Phänomene treten auf, wenn man zum Beispiel einen Supraleiter und nanometergrosse Strukturen, sogenannte Quantenpunkte, in einem Bauteil kombiniert.

Forscher der Universität Basel um Professor Christian Schönenberger haben nun einen solchen Quantenpunkt zwischen einem Supraleiter und einem normalleitenden Metall konstruiert, um den Transport von Elektronen zwischen den beiden Komponenten zu untersuchen.

Eigentlich sollte es unmöglich sein, bei kleinen Energien Elektronen vom Supraleiter durch den Quantenpunkt zu transportieren. Zum einen kommen Elektronen in einem Supraleiter nicht einzeln, sondern immer nur zu zweit als sogenannte Cooper-Paare vor, die sich nur durch relativ grosse Energien trennen lassen. Zum anderen ist der Quantenpunkt so klein, dass wegen der elektrischen Abstossung zwischen den Elektronen nur ein Teilchen auf einmal transportiert wird.

Wissenschaftler stellten aber in der Vergangenheit wiederholt fest, dass trotzdem Strom zwischen dem Supraleiter und dem Metall fliesst – es also doch zu einem Elektronentransport durch den Quantenpunkt kommt.

Erster Nachweis des Transportmechanismus durch einen Quantenpunkt

In den Neunzigerjahren wurden auf der Grundlage der Quantenmechanik Theorien entwickelt, die zeigen, dass der Transport von Cooper-Paaren durch einen Quantenpunkt unter bestimmten Bedingungen durchaus möglich ist. Voraussetzung dafür ist, dass das zweite Elektron dem ersten sehr schnell folgt, nämlich innerhalb der Zeit, die in etwa durch die Heisenbergsche Unschärferelation gegeben ist.

Die Wissenschaftler der Universität Basel konnten nun genau dieses Phänomen messen. In ihren Experimenten fanden die Wissenschaftler exakt dieselben diskreten Linien, die theoretisch berechnet wurden. Das Team mit dem Doktoranden Jörg Gramich und seinem Betreuer Dr. Andreas Baumgartner konnte zudem nachweisen, dass der Prozess auch funktioniert, wenn Energie an die Umgebung abgegeben, oder von dort aufgenommen wird.

«Unsere Ergebnisse tragen dazu bei, die Transporteigenschaften von supraleitenden elektronischen Nanostrukturen besser zu verstehen, die für Anwendungen in der Quantentechnologie von grossem Interesse sind», so Dr. Andreas Baumgartner.

Originalbeitrag
J. Gramich, A. Baumgartner, and C. Schönenberger
Resonant and inelastic Andreev tunneling observed on a carbon nanotube quantum dot
Physical Review Letters 115, doi: 10.1103/PhysRevLett.115.216801

Weitere Auskünfte
Dr. Andreas Baumgartner, Universität Basel, Departement Physik, Tel. +41 61 267 39 06, E-Mail: andreas.baumgartner@unibas.ch

http://dx.doi.org/10.1103/PhysRevLett.115.216801 – Abstract

Media Contact

Reto Caluori Universität Basel

Weitere Informationen:

http://www.unibas.ch

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer