Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eiskalter Blick zum Urknall - Zu neuen Materiezuständen in ultrakalten Atomgemischen

18.03.2011
Einen Meilenstein in der Erforschung von Quantengasmischungen haben Forscher des Instituts für Quantenoptik und Quanteninformation (IQOQI) in Innsbruck erreicht.

Der Gruppe um Rudolf Grimm und Florian Schreck gelang es erstmals, in einem Quantengas zwischen zwei fermionischen Elementen, Lithium-6 und Kalium-40, eine starke Wechselwirkung kontrolliert herzustellen. Ein solches Modellsystem verspricht nicht nur neue Einsichten in die Festkörperphysik, sondern zeigt auch verblüffende Analogien zur Urmaterie kurz nach dem Big Bang.


Der Forschungsgruppe um Rudolf Grimm und Florian Schreck gelang es erstmals, in einem Quantengas zwischen zwei fermionischen Elementen, Lithium-6 (blau) und Kalium-40 (rot), eine starke Wechselwirkung kontrolliert herzustellen. Grafik: Ritsch

In den ersten Sekundenbruchteilen nach dem Urknall bestand das gesamte Universum Theorien nach aus einem Quark-Gluon-Plasma. Auf der Erde lässt sich diese „Ursuppe“ in großen Teilchenbeschleunigern beobachten, wenn zum Beispiel Kerne von Bleiatomen mit annähernder Lichtgeschwindigkeit aufeinander geschossen und mit Detektoren die dabei entstehenden Produkte untersucht werden. Nun gelang es Quantenphysikern um Prof. Rudolf Grimm und Dr. Florian Schreck vom Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften (ÖAW) gemeinsam mit italienischen und australischen Forschern erstmals, Teilchenwolken aus Lithium-6 und Kalium-40-Atomen kontrolliert wechselwirken zu lassen. Sie konnten damit ein Modellsystem etablieren, das sich ähnlich verhält wie das um mehr als 20 Größenordnungen energetisch stärkere Quark-Gluon-Plasma.

Quantengas zerfließt gemeinsam

Bereits 2008 bestimmten die Innsbrucker Physiker in einer Quantengasmischung aus Lithium- und Kaliumatomen sogenannte Feshbach-Resonanzen, mit denen sie die quantenmechanische Wechselwirkung zwischen den Teilchen über ein Magnetfeld beliebig verändern können. Inzwischen haben sie alle technischen Herausforderungen gemeistert und können als weltweit erste auch sehr hohe Wechselwirkungen zwischen den Teilchen herstellen. „Die Magnetfelder müssen dazu auf ein Hunderttausendstel genau justiert und sehr präzise kontrolliert werden“, erklärt Florian Schreck, der im Vorjahr mit dem START-Preis ausgezeichnet wurde.

In dem Experiment präparieren die Physiker in einer optischen Falle die ultrakalten Gase aus Lithium-6 und Kalium-40-Atomen und legen sie übereinander, wobei die kleinere Wolke der schwereren Kaliumatome sich im Zentrum der Lithiumwolke befindet. Nach dem Abschalten der Falle beobachten sie bei unterschiedlich starken Magnetfeldern die Expansion des Quantengases. „Bei starker Wechselwirkung der Teilchen verhalten sich die Gaswolken plötzlich hydrodynamisch“, erzählt Schreck. „Im Zentrum der Teilchenwolke - dort wo die Kaliumatome mit den Lithiumatomen wechselwirken - bildet sich ein elliptischer Kern. Außerdem passen die unterschiedlich schweren Teilchen ihre Expansionsgeschwindigkeiten aneinander an.“ Aus der Theorie weiß man, dass beide Phänomene auf hydrodynamisches Verhalten des Quantengases schließen lassen. „Dieses Verhalten ist das auffälligste Phänomen, das in Quantengasen beobachtet werden kann, wenn Teilchen stark miteinander wechselwirken“, sagt Rudolf Grimm. „Dieses Experiment eröffnet damit ein neues Gebiet der Vielteilchenphysik.“

Tür zu spannenden Experimenten

Auch Hochenergiephysiker machen diese zwei Beobachtungen, wenn sie in Teilchenbeschleunigern Quark-Gluon-Plasmen herstellen. Unter sehr gut kontrollierten Laborbedingungen kann das Innsbrucker Quantengasexperiment damit als Modellsystem für Phänomene im Universum kurz nach dem Urknall gesehen werden. „Wir können daran aber vor allem auch sehr vielen Fragen der Festkörperphysik modellhaft untersuchen“, freut sich Rudolf Grimm, der das Quantengasgemisch nun mit seinem Team weiter untersuchen will. „Ein großes Ziel ist es, Quantenkondensate herzustellen, wie z.B. Bose-Einstein-Kondensate von aus Lithium- und Kaliumatomen gebildeten Molekülen. Dies wird unsere Möglichkeiten, neuartige Materiezustände zu realisieren, noch erheblich erweitern.“

Die Physiker berichten in der Fachzeitschrift Physical Review Letters über die neuen Ergebnisse. Unterstützt wurden sie bei ihrer Arbeit vom österreichischen Wissenschaftsfonds FWF durch den Spezialforschungsbereich FoQuS und von der European Science Foundation ESF im Programm EuroQUAM, sowie mit dem Wittgenstein-Preis durch den FWF und das österreichische Wissenschaftsministerium.

Publikation: Hydrodynamic Expansion of a Strongly Interacting Fermi-Fermi Mixture. A. Trenkwalder, C. Kohstall, M. Zaccanti, D. Naik, A. I. Sidorov, F. Schreck, R. Grimm. Physical Review Letters 106, 115304 (2011)
DOI: 10.1103/PhysRevLett.106.115304
http://dx.doi.org/10.1103/PhysRevLett.106.115304
Kontakt:
Dr. Florian Schreck
Institut für Quantenoptik und Quanteninformation
Österreichische Akademie der Wissenschaften
Technikerstr. 21a, A-6020 Innsbruck
T: +43 512 507 4715
E-Mail: florian.schreck@oeaw.ac.at
Web: http://www.ultracold.at/
Dr. Christian Flatz
Public Relations
Institut für Quantenoptik und Quanteninformation
Österreichische Akademie der Wissenschaften
Otto-Hittmair-Platz 1, 6020 Innsbruck, Austria
Mobil: +43 650 5777122
E-Mail: pr-iqoqi@oeaw.ac.at

Dr. Christian Flatz | Universität Innsbruck
Weitere Informationen:
http://www.iqoqi.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Perspektiven durch gespiegelte Systeme
05.12.2016 | Friedrich-Schiller-Universität Jena

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten