Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein einzelnes Atom als Lichtschalter

05.11.2013
Mit einem einzigen Atom kann man an der TU Wien das Licht zwischen Glasfaserkabeln hin und her schalten. So lassen sich Quantenphänomene für Informations- und Kommunikationstechnik nutzen.

Glasfaserkabel werden zum Quantenlabor: Möglichst klein möchte man optische Schalter bauen, um Licht manipulieren zu können. An der TU Wien gelang das mit einem einzigen Atom. Ganz alltägliche Glasfasern, wie sie heute für die Internet-Datenübertragung verwendet werden, können dadurch nun über winzige Quantensysteme miteinander verschaltet werden.


Der Quanten-Lichtschalter: Er kann beide möglichen Zustände gleichzeitig einnehmen.
TU Wien


Licht in der Flasche: Eine bauchig geformte Glasfaser, an der Licht im Kreis läuft.
TU Wien

Licht in der Flasche

Laserlicht wird von Prof. Arno Rauschenbeutel und seinem Team an der TU Wien in sogenannte „Flaschen-Resonatoren“ abgefüllt – bauchig geformte Glasobjekte, an deren Oberfläche das Licht im Kreis läuft. Bringt man einen solchen Resonator in die Nähe einer lichtleitenden Glasfaser, dann koppeln die beiden Systeme aneinander und Licht kann von der Glasfaser in den Flaschen-Resonator wechseln.

„Wenn der Umfang des Resonators genau zur Wellenlänge des Lichts passt, kann man sogar erreichen, dass das gesamte Licht vom Glasfaserkabel in den Resonator übertritt – und von dort kann man es dann wiederum in eine zweite Glasfaser weiterleiten“, sagt Arno Rauschenbeutel.

Rubidiumatom als Schalter

Dieses Gesamtsystem aus Eingangsglasfaser, Flaschenresonator und Ausgangsglasfaser ist allerdings höchst empfindlich: „Wenn man nur ein einziges Rubidiumatom mit dem Resonator in Kontakt bringt, kann sich das Verhalten dramatisch ändern“, erklärt Rauschenbeutel. Wenn das Licht genau auf das Atom abgestimmt ist, lässt sich sogar erreichen, dass das Licht gar nicht erst in den Flaschenresonator eindringt und in der ursprünglichen Glasfaser weiterwandert anstatt in die Ausgangsglasfaser überzuwechseln. Das Atom wirkt also als Schalter, der festlegt, in welcher Glasfaser das Licht geleitet wird.

Beide Möglichkeiten gleichzeitig: Der Quanten-Lichtschalter

In einem nächsten Schritt wollen die Physiker ausnutzen, dass das Rubidiumatom sich in unterschiedlichen Quantenzuständen befinden kann, wobei nur einer dieser Zustände mit dem Resonator wechselwirkt. Befindet sich das Atom im anderen Zustand verhält sich das Licht so, als wäre das Atom gar nicht da. Je nach Zustand des Atoms wird das Licht also entweder in das eine oder in das andere Glasfaserkabel geschickt. Nun kann man sich eine bemerkenswerten Eigenschaften der Quantenphysik zu Nutze machen: „In der Quantenphysik ist es möglich, dass Objekte verschiedene Zustände gleichzeitig annehmen“, sagt Arno Rauschenbeutel. Man kann also das Atom so präparieren, dass es sich gleichzeitig in beiden Schaltzuständen befindet. Dementsprechend liegen in jedem der beiden Glasfaserkabel auch die Zustände „Licht“ und „kein Licht“ gleichzeitig vor.

Was für den klassischen Lichtschalter zu Hause völlig undenkbar wäre, ist für einen „Quanten-Lichtschalter“ also kein Problem. „Spannend ist es nun, zu überprüfen, ob solche Überlagerungen auch mir stärkeren Lichtpulsen möglich sind – irgendwo müssen wir hier auf einen Übergang zwischen Quantenphysik und klassischer Physik stoßen“, meint Rauschenbeutel.

Für Quanteninformation und Quantenkommunikation ist der optische Schalter ein sehr mächtiges neues Werkzeug. „Wir planen, ganz gezielt Quanten-Verschränkungen zwischen Licht und Materie herstellen“, sagt Arno Rauschenbeutel, „und das nicht mit einem exotischen Gerät, das es nur im Labor gibt, sondern mit ganz normalen Glasfasern, wie sie schon heute für die Kommunikation verwendet werden.“

Abstract:
http://prl.aps.org/abstract/PRL/v111/i19/e193601
Original Paper:
http://physics.aps.org/featured-article-pdf/10.1103/PhysRevLett.111.193601
Bilderdownload: http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2013/lichtschalter/
Rückfragehinweis:
Prof. Arno Rauschenbeutel
Atominstitut
Vienna Center for Quantum Science and Technology
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141761
arno.rauschenbeutel@tuwien.ac.at
Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T: +43-1-58801-41027
florian.aigner@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie