Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einzelne Atome als optische Transistoren

13.05.2010
MPQ-Physiker manipulieren die Transparenz von Atomen mit Hilfe von Laserstrahlen.

Die ständig fortschreitende Verkleinerung der Strukturen auf Computerchips führt dazu, dass bald die Grenze erreicht wird, jenseits der die Gesetze der klassischen Physik nicht mehr gelten.

Weltweit gehen daher Wissenschaftler der Frage nach, ob und wie sich Quanteneffekte für die Übertragung und Verarbeitung von Informationen nutzen lassen. Vielversprechende Systeme sind z. B. Quantennetzwerke, in denen einzelne Lichtquanten die Daten zwischen den Knoten – z.B. einzelnen Atomen – übertragen. Dort werden die Informationen dann gespeichert und verarbeitet.

Ein wichtiges Element bei der Entwicklung und Konzeption solcher Systeme ist die „Elektromagnetisch Induzierte Transparenz (EIT)“. Dieses Phänomen erlaubt es, die optischen Eigenschaften von atomaren Medien mit Hilfe von Licht drastisch zu verändern. Bislang wurde dieser Effekt nur an größeren Ensembles aus vielen hunderttausend Atomen nachgewiesen. Erstmals hat jetzt ein Team um Prof. Gerhard Rempe, Direktor am Max-Planck-Institut für Quantenoptik und Leiter der Abteilung Quantendynamik, gezeigt, dass sich auch die optische Transparenz einzelner, in einem Mikroresonator gefangenen Atome mit Laserpulsen quasi per Knopfdruck kontrollieren lässt (Nature, Advanced Online Publication, DOI: 10.1038 /nature09093 May 2010). Dieses Ergebnis ist ein Meilenstein in der Entwicklung von Werkzeugen für die Quanteninformationsverarbeitung; es vertieft aber auch das Verständnis darüber, wie das Quantenverhalten einzelner Atome durch Licht gesteuert werden kann.

Der Begriff der „Elektromagnetisch Induzierten Transparenz“ beschreibt den Effekt, dass die Wechselwirkung zwischen einem schwachen Laserfeld und einem atomaren Medium durch ein zweites Laserfeld kohärent gesteuert und manipuliert werden kann. Um diesen Effekt zu erzielen, wird in der Praxis das Medium mit zwei Laserstrahlen beleuchtet: Unter dem Einfluss eines Kontroll-Lasers wird das Medium für den schwachen Teststrahl transparent. Darüber hinaus kann der EIT-Effekt dazu genutzt werden, Quanteninformation mit Hilfe von Lichtpulsen in Atomen zu speichern und wieder auszulesen. Damit lassen sich Schnittstellen zwischen den „fliegenden“, die Information übertragenden Photonen und den stationären, als Speicherbausteine genutzten Atomen verwirklichen.

In allen bisherigen Untersuchungen wurde der EIT-Effekt an Ensembles aus sehr vielen Atomen demonstriert. In dem hier beschriebenen Experiment dagegen wird ein einzelnes Rubidium-Atom über längere Zeit in einem von zwei Spiegeln höchster Güte gebildeten Resonator eingefangen. Durch die Vielfachreflexionen wird die Licht-Materie-Wechselwirkung erheblich verstärkt, sodass Resonator und Atom ein stark gekoppeltes System bilden. Entlang der Resonatorachse wird nun Laserlicht eingestrahlt. Im Fall eines leeren Resonators wird das gesamte Licht durchgelassen. Die Anwesenheit eines Atoms führt dagegen dazu, dass das Licht reflektiert wird und die Transmission sinkt. Wird das Atom nun zusätzlich senkrecht zur Resonatorachse mit einem Kontroll-Laser beleuchtet, während die Bedingung für EIT erfüllt ist, wird das Atom wieder durchsichtig und maximale Transmission erzielt. Das einzelne Atom arbeitet also wie ein Transistor: es steuert, ob der Resonator Licht durchlässt oder nicht.

In weiteren Experimenten gelang es den Wissenschaftlern um Prof. Gerhard Rempe, diesen EIT-Effekt auch mit einer kontrollierten Zahl von Atomen im Resonator zu erzielen. „ Die Anwendung des EIT-Effekts auf eine gezielt eingestellte Zahl von Atomen gibt uns die Möglichkeit, viele Quanteneigenschaften des von dem Resonator durchgelassenen Lichtes zu steuern“, erklärt Martin Mücke, Doktorand am Experiment. „Gewöhnlich können Photonen nicht miteinander in Wechselwirkung treten. Mit unserem Experiment können wir ein lang erstrebtes Ziel erreichen: eine starke Wechselwirkung zwischen Photonen, die von einem einzelnen Atom vermittelt wird. Dieser Aufbau ist ein potentieller Baustein für den Quantencomputer der Zukunft.“ Olivia Meyer-Streng

Originalveröffentlichung:
Electromagnetically induced transparency with single atoms in a cavity
M. Mücke, E. Figueroa, J. Bochmann, C. Hahn, K. Murr, S. Ritter, C. J. Villas-Boas und G. Rempe.

Nature, Advance Online Publication, DOI: 10.1038/nature09093, Mai 2010

Kontakt:
Prof. Dr. Gerhard Rempe
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 - 89 / 32905 - 701
Fax: +49 - 89 / 32905 – 311
E-Mail: gerhard.rempe@mpq.mpg.de
Dr. Eden Figueroa
Max-Planck-Institut für Quantenoptik
Tel.: +49 - 89 / 32905 - 241
E-Mail: eden.figueroa@mpq.mpg.de
Dipl. Phys. Martin Mücke
Max-Planck-Institut für Quantenoptik
Tel.: +49 - 89 / 32905 - 356
E-Mail: martin.muecke@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Tel.: +49 - 89 / 32905 - 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Stabile Quantenbits
08.12.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Plankton schwimmt gegen den Strom

12.12.2017 | Biowissenschaften Chemie

Gedränge in der Haut

12.12.2017 | Biowissenschaften Chemie

Goldmedaille für die praktischen Ergebnisse der Forschungsarbeit bei Nutricard

11.12.2017 | Unternehmensmeldung