Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einzelne Atome als optische Transistoren

13.05.2010
MPQ-Physiker manipulieren die Transparenz von Atomen mit Hilfe von Laserstrahlen.

Die ständig fortschreitende Verkleinerung der Strukturen auf Computerchips führt dazu, dass bald die Grenze erreicht wird, jenseits der die Gesetze der klassischen Physik nicht mehr gelten.

Weltweit gehen daher Wissenschaftler der Frage nach, ob und wie sich Quanteneffekte für die Übertragung und Verarbeitung von Informationen nutzen lassen. Vielversprechende Systeme sind z. B. Quantennetzwerke, in denen einzelne Lichtquanten die Daten zwischen den Knoten – z.B. einzelnen Atomen – übertragen. Dort werden die Informationen dann gespeichert und verarbeitet.

Ein wichtiges Element bei der Entwicklung und Konzeption solcher Systeme ist die „Elektromagnetisch Induzierte Transparenz (EIT)“. Dieses Phänomen erlaubt es, die optischen Eigenschaften von atomaren Medien mit Hilfe von Licht drastisch zu verändern. Bislang wurde dieser Effekt nur an größeren Ensembles aus vielen hunderttausend Atomen nachgewiesen. Erstmals hat jetzt ein Team um Prof. Gerhard Rempe, Direktor am Max-Planck-Institut für Quantenoptik und Leiter der Abteilung Quantendynamik, gezeigt, dass sich auch die optische Transparenz einzelner, in einem Mikroresonator gefangenen Atome mit Laserpulsen quasi per Knopfdruck kontrollieren lässt (Nature, Advanced Online Publication, DOI: 10.1038 /nature09093 May 2010). Dieses Ergebnis ist ein Meilenstein in der Entwicklung von Werkzeugen für die Quanteninformationsverarbeitung; es vertieft aber auch das Verständnis darüber, wie das Quantenverhalten einzelner Atome durch Licht gesteuert werden kann.

Der Begriff der „Elektromagnetisch Induzierten Transparenz“ beschreibt den Effekt, dass die Wechselwirkung zwischen einem schwachen Laserfeld und einem atomaren Medium durch ein zweites Laserfeld kohärent gesteuert und manipuliert werden kann. Um diesen Effekt zu erzielen, wird in der Praxis das Medium mit zwei Laserstrahlen beleuchtet: Unter dem Einfluss eines Kontroll-Lasers wird das Medium für den schwachen Teststrahl transparent. Darüber hinaus kann der EIT-Effekt dazu genutzt werden, Quanteninformation mit Hilfe von Lichtpulsen in Atomen zu speichern und wieder auszulesen. Damit lassen sich Schnittstellen zwischen den „fliegenden“, die Information übertragenden Photonen und den stationären, als Speicherbausteine genutzten Atomen verwirklichen.

In allen bisherigen Untersuchungen wurde der EIT-Effekt an Ensembles aus sehr vielen Atomen demonstriert. In dem hier beschriebenen Experiment dagegen wird ein einzelnes Rubidium-Atom über längere Zeit in einem von zwei Spiegeln höchster Güte gebildeten Resonator eingefangen. Durch die Vielfachreflexionen wird die Licht-Materie-Wechselwirkung erheblich verstärkt, sodass Resonator und Atom ein stark gekoppeltes System bilden. Entlang der Resonatorachse wird nun Laserlicht eingestrahlt. Im Fall eines leeren Resonators wird das gesamte Licht durchgelassen. Die Anwesenheit eines Atoms führt dagegen dazu, dass das Licht reflektiert wird und die Transmission sinkt. Wird das Atom nun zusätzlich senkrecht zur Resonatorachse mit einem Kontroll-Laser beleuchtet, während die Bedingung für EIT erfüllt ist, wird das Atom wieder durchsichtig und maximale Transmission erzielt. Das einzelne Atom arbeitet also wie ein Transistor: es steuert, ob der Resonator Licht durchlässt oder nicht.

In weiteren Experimenten gelang es den Wissenschaftlern um Prof. Gerhard Rempe, diesen EIT-Effekt auch mit einer kontrollierten Zahl von Atomen im Resonator zu erzielen. „ Die Anwendung des EIT-Effekts auf eine gezielt eingestellte Zahl von Atomen gibt uns die Möglichkeit, viele Quanteneigenschaften des von dem Resonator durchgelassenen Lichtes zu steuern“, erklärt Martin Mücke, Doktorand am Experiment. „Gewöhnlich können Photonen nicht miteinander in Wechselwirkung treten. Mit unserem Experiment können wir ein lang erstrebtes Ziel erreichen: eine starke Wechselwirkung zwischen Photonen, die von einem einzelnen Atom vermittelt wird. Dieser Aufbau ist ein potentieller Baustein für den Quantencomputer der Zukunft.“ Olivia Meyer-Streng

Originalveröffentlichung:
Electromagnetically induced transparency with single atoms in a cavity
M. Mücke, E. Figueroa, J. Bochmann, C. Hahn, K. Murr, S. Ritter, C. J. Villas-Boas und G. Rempe.

Nature, Advance Online Publication, DOI: 10.1038/nature09093, Mai 2010

Kontakt:
Prof. Dr. Gerhard Rempe
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 - 89 / 32905 - 701
Fax: +49 - 89 / 32905 – 311
E-Mail: gerhard.rempe@mpq.mpg.de
Dr. Eden Figueroa
Max-Planck-Institut für Quantenoptik
Tel.: +49 - 89 / 32905 - 241
E-Mail: eden.figueroa@mpq.mpg.de
Dipl. Phys. Martin Mücke
Max-Planck-Institut für Quantenoptik
Tel.: +49 - 89 / 32905 - 356
E-Mail: martin.muecke@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Tel.: +49 - 89 / 32905 - 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultra-sensitiv dank quantenmechanischer Verschränkung
28.06.2017 | Universität Stuttgart

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ultra-sensitiv dank quantenmechanischer Verschränkung

28.06.2017 | Physik Astronomie

Chemisches Profil von Ameisen passt sich bei Selektionsdruck rasch an

28.06.2017 | Biowissenschaften Chemie

Umfangreiche Fördermaßnahmen für Forschung an Chromatin, Nebenniere und Krebstherapie

28.06.2017 | Förderungen Preise