Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Tiefpassfilter für Photonen

13.04.2017

Garchinger Physiker beobachten neuartigen Quanteneffekt, der die Zahl der emittierten Photonen limitiert.

Die Wahrscheinlichkeit, in einem Laserpuls eine bestimmte Anzahl an Photonen zu finden, entspricht einer klassischen Verteilung für unabhängige Ereignisse (Poisson-Verteilung). Aber es gibt auch Lichtquellen mit nicht-klassischen Verteilungen, die nur mit Hilfe der Quantenmechanik beschrieben werden können.


Veranschaulichung der Zwei-Photonen-Blockade.

Oben: Unter Bestrahlung mit Laserpulsen kann ein einzelnes Atom im freien Raum nur ein Photon speichern und aussenden, wobei die Richtung nicht vorgegeben ist.

Mitte: Der Resonator alleine kann beliebig viele Photonen aufnehmen und wieder aussenden.

Unten: Bei dem stark gekoppelten Atom-Resonator-System kann die Frequenz des Laserlichts so gewählt werden, dass das System maximal zwei Photonen speichern und wieder aussenden kann.

MPQ, Abteilung Quantendynamik

Prominentestes Beispiel hierfür ist die Einzelphotonenquelle, die z.B. in der Quantenkryptographie für den abhörsicheren Austausch von Schlüsseln oder für die Vernetzung von Quantenspeichern und -prozessoren genutzt werden kann. Für viele neuartige Anwendungen in der nichtlinearen Quantenoptik wäre es jedoch wünschenswert, Lichtpulse mit einer festen Zahl an Photonen, z.B. zwei, drei oder vier Photonen, zu erzeugen.

Einem Team von Wissenschaftlern aus der Abteilung Quantendynamik von Prof. Gerhard Rempe am Max-Planck-Institut für Quantenoptik in Garching ist jetzt der erste Schritt in diese Richtung gelungen. Die Physiker konnten in einem stark gekoppelten Atom-Resonator-System erstmals eine sogenannte Zwei-Photonen-Blockade beobachten: das System emittiert höchstens zwei Photonen gleichzeitig, da es nur zwei Photonen auf einmal speichern kann (PRL, 31. März 2017).

Naiv betrachtet könnte man meinen, für die Erzeugung von Einzelphotonen reiche es aus, einen Laserpuls nur genügend stark abzuschwächen. In diesem Fall schwankt die Photonenzahl jedoch in jedem einzelnen Puls und nur die Mittelung über viele Pulse ergibt eine durchschnittliche Photonenzahl von eins. Anwendungen benötigen jedoch genau ein Photon pro Puls. Deutlich reduzieren lassen sich die Schwankungen, wenn man ein einzelnes Atom als Einzelphotonenquelle nutzt.

Wird es von einem Laserpuls getroffen, kann es nur ein Photon absorbieren und geht dabei vom Grundzustand in den angeregten Zustand über. Ein zweites Photon kann erst absorbiert werden, wenn das Atom vom angeregten Zustand wieder in den Grundzustand gefallen ist und dabei ein Photon ausgesendet hat. Im emittierten Lichtfeld werden also niemals gleichzeitig zwei oder mehrere Photonen detektiert. Man spricht hierbei auch vom Effekt der „Einzel-Photonen-Blockade“

Möchte man das Prinzip der Einzel-Photonen-Blockade auf zwei Photonen übertragen, reicht ein einzelnes Atom nicht mehr aus. Stattdessen braucht man ein System, das zwei Photonen, aber nicht mehr, gleichzeitig speichern kann. Hierzu kombinieren die Garchinger Physiker das einzelne Atom mit einem Resonator, welcher dem Atom zusätzliche Speicherkapazitäten für Photonen bereitstellt. Ein Resonator kann beliebig viele Photonen aufnehmen und besitzt entsprechend unendlich viele Energiezustände, die – ähnlich wie bei einer Leiter – immer exakt den gleichen Abstand voneinander haben.

Durch Einbringen eines Atoms in den Resonator wird ein nichtlineares Element eingeführt. Dadurch spalten die Energiezustände der „Resonator-Leiter“ auf, und zwar für jede Leiterstufe unterschiedlich stark. Die Stufen der Leiter haben nun nicht mehr den gleichen Abstand voneinander. Laserlicht einer bestimmten Frequenz kann das System daher nur bis zu der entsprechenden Energiestufe, auf die es abgestimmt ist, anregen. Die Anzahl der im System speicherbaren Photonen ist also begrenzt und höchstens entsprechend viele Photonen können gleichzeitig emittiert werden.

In ihrem Experiment fangen die Physiker mit Hilfe einer optischen Falle ein einzelnes Rubidiumatom in einem aus zwei Spiegeln höchster Güte gebildeten Resonator ein. Die Laserfrequenz wird auf eine Energiestufe abgestimmt, deren Anregung die Absorption von zwei Photonen erfordert. Während der fünf Sekunden, die das Atom im Resonator gespeichert ist, werden ca. 5000 Messungen durchgeführt. Dabei wird das Atom-Resonator-System jeweils mit Licht bestrahlt und das emittierte Signal mit Einzelphotonendetektoren aufgezeichnet. „Interessanterweise hängt die Schwankung in der Zahl der emittierten Photonen stark davon ab, ob wir den Resonator oder das Atom angeregen“, betont Dr. Tatjana Wilk, die Projektleiterin.

„Nur im Fall der atomaren Anregung erzielen wir den Effekt, dass die Abstrahlung von Lichtpulsen mit mehr als zwei Photonen unterdrückt ist. Dieser Quanteneffekt tritt dagegen nicht auf, wenn wir den Resonator anregen. Dann registrieren wir z.B. auch verstärkt Lichtpulse mit drei oder mehr Photonen.“

Die zugrundeliegenden Prozesse erläutert Christoph Hamsen, Doktorand am Experiment: „Wenn das Atom angeregt wird, dann haben wir es mit konkurrierenden Mechanismen zu tun. Einerseits kann das Atom nur eine Anregung auf einmal aufnehmen. Andererseits ist das stark gekoppelte Atom-Resonator-System für die Absorption von zwei Photonen resonant. Dieses Wechselspiel führt zu einer Folge von Lichtpulsen mit einer nicht-klassischen Photonen-Verteilung.“ Und Nicolas Tolazzi, ebenfalls Doktorand am Experiment, ergänzt: „Beobachten konnten wir dieses Verhalten in Korrelationen zwischen detektierten Photonen, wobei drei gleichzeitige Photonen seltener auftraten als klassisch erwartet.“

Prof. Gerhard Rempe gibt einen Ausblick auf mögliche Erweiterungen dieses Experiments: „Noch sendet unser System auch Lichtpulse mit einem oder null Photonen aus, es arbeitet also wie eine Art ‚Tiefpassfilter‘. Für viele Anwendungen bei der Übertragung und Verarbeitung von Quanteninformation benötigt man aber z.B. genau zwei, drei oder vier Photonen. Unser Ziel ist es, in Zukunft solche reinen Zustände zu generieren. Die in diesem Experiment erreichte Zwei-Photonen-Blockade ist ein erster Schritt in diese Richtung." Olivia Meyer-Streng

Bildbeschreibung:
Veranschaulichung der Zwei-Photonen-Blockade.
Oben: Unter Bestrahlung mit Laserpulsen kann ein einzelnes Atom im freien Raum nur ein Photon speichern und aussenden, wobei die Richtung nicht vorgegeben ist.
Mitte: Der Resonator alleine kann beliebig viele Photonen aufnehmen und wieder aussenden.
Unten: Bei dem stark gekoppelten Atom-Resonator-System kann die Frequenz des Laserlichts so gewählt werden, dass das System maximal zwei Photonen speichern und wieder aussenden kann.

Originalveröffentlichung:
Christoph Hamsen, Karl Nicolas Tolazzi, Tatjana Wilk, and Gerhard Rempe
Two-Photon Blockade in an Atom-Driven Cavity QED System
Physical Review Letters 118, 133604 (31.03.2017)

Kontakt:

Dr. Tatjana Wilk
Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 - 670
E-Mail: tatjana.wilk@mpq.mpg.de

Prof. Dr. Gerhard Rempe
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 701
E-Mail: gerhard.rempe@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 - 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht APEX wirft einen Blick ins Herz der Finsternis
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht Matrix-Theorie als Ursprung von Raumzeit und Kosmologie
23.05.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics