Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Tiefpassfilter für Photonen

13.04.2017

Garchinger Physiker beobachten neuartigen Quanteneffekt, der die Zahl der emittierten Photonen limitiert.

Die Wahrscheinlichkeit, in einem Laserpuls eine bestimmte Anzahl an Photonen zu finden, entspricht einer klassischen Verteilung für unabhängige Ereignisse (Poisson-Verteilung). Aber es gibt auch Lichtquellen mit nicht-klassischen Verteilungen, die nur mit Hilfe der Quantenmechanik beschrieben werden können.


Veranschaulichung der Zwei-Photonen-Blockade.

Oben: Unter Bestrahlung mit Laserpulsen kann ein einzelnes Atom im freien Raum nur ein Photon speichern und aussenden, wobei die Richtung nicht vorgegeben ist.

Mitte: Der Resonator alleine kann beliebig viele Photonen aufnehmen und wieder aussenden.

Unten: Bei dem stark gekoppelten Atom-Resonator-System kann die Frequenz des Laserlichts so gewählt werden, dass das System maximal zwei Photonen speichern und wieder aussenden kann.

MPQ, Abteilung Quantendynamik

Prominentestes Beispiel hierfür ist die Einzelphotonenquelle, die z.B. in der Quantenkryptographie für den abhörsicheren Austausch von Schlüsseln oder für die Vernetzung von Quantenspeichern und -prozessoren genutzt werden kann. Für viele neuartige Anwendungen in der nichtlinearen Quantenoptik wäre es jedoch wünschenswert, Lichtpulse mit einer festen Zahl an Photonen, z.B. zwei, drei oder vier Photonen, zu erzeugen.

Einem Team von Wissenschaftlern aus der Abteilung Quantendynamik von Prof. Gerhard Rempe am Max-Planck-Institut für Quantenoptik in Garching ist jetzt der erste Schritt in diese Richtung gelungen. Die Physiker konnten in einem stark gekoppelten Atom-Resonator-System erstmals eine sogenannte Zwei-Photonen-Blockade beobachten: das System emittiert höchstens zwei Photonen gleichzeitig, da es nur zwei Photonen auf einmal speichern kann (PRL, 31. März 2017).

Naiv betrachtet könnte man meinen, für die Erzeugung von Einzelphotonen reiche es aus, einen Laserpuls nur genügend stark abzuschwächen. In diesem Fall schwankt die Photonenzahl jedoch in jedem einzelnen Puls und nur die Mittelung über viele Pulse ergibt eine durchschnittliche Photonenzahl von eins. Anwendungen benötigen jedoch genau ein Photon pro Puls. Deutlich reduzieren lassen sich die Schwankungen, wenn man ein einzelnes Atom als Einzelphotonenquelle nutzt.

Wird es von einem Laserpuls getroffen, kann es nur ein Photon absorbieren und geht dabei vom Grundzustand in den angeregten Zustand über. Ein zweites Photon kann erst absorbiert werden, wenn das Atom vom angeregten Zustand wieder in den Grundzustand gefallen ist und dabei ein Photon ausgesendet hat. Im emittierten Lichtfeld werden also niemals gleichzeitig zwei oder mehrere Photonen detektiert. Man spricht hierbei auch vom Effekt der „Einzel-Photonen-Blockade“

Möchte man das Prinzip der Einzel-Photonen-Blockade auf zwei Photonen übertragen, reicht ein einzelnes Atom nicht mehr aus. Stattdessen braucht man ein System, das zwei Photonen, aber nicht mehr, gleichzeitig speichern kann. Hierzu kombinieren die Garchinger Physiker das einzelne Atom mit einem Resonator, welcher dem Atom zusätzliche Speicherkapazitäten für Photonen bereitstellt. Ein Resonator kann beliebig viele Photonen aufnehmen und besitzt entsprechend unendlich viele Energiezustände, die – ähnlich wie bei einer Leiter – immer exakt den gleichen Abstand voneinander haben.

Durch Einbringen eines Atoms in den Resonator wird ein nichtlineares Element eingeführt. Dadurch spalten die Energiezustände der „Resonator-Leiter“ auf, und zwar für jede Leiterstufe unterschiedlich stark. Die Stufen der Leiter haben nun nicht mehr den gleichen Abstand voneinander. Laserlicht einer bestimmten Frequenz kann das System daher nur bis zu der entsprechenden Energiestufe, auf die es abgestimmt ist, anregen. Die Anzahl der im System speicherbaren Photonen ist also begrenzt und höchstens entsprechend viele Photonen können gleichzeitig emittiert werden.

In ihrem Experiment fangen die Physiker mit Hilfe einer optischen Falle ein einzelnes Rubidiumatom in einem aus zwei Spiegeln höchster Güte gebildeten Resonator ein. Die Laserfrequenz wird auf eine Energiestufe abgestimmt, deren Anregung die Absorption von zwei Photonen erfordert. Während der fünf Sekunden, die das Atom im Resonator gespeichert ist, werden ca. 5000 Messungen durchgeführt. Dabei wird das Atom-Resonator-System jeweils mit Licht bestrahlt und das emittierte Signal mit Einzelphotonendetektoren aufgezeichnet. „Interessanterweise hängt die Schwankung in der Zahl der emittierten Photonen stark davon ab, ob wir den Resonator oder das Atom angeregen“, betont Dr. Tatjana Wilk, die Projektleiterin.

„Nur im Fall der atomaren Anregung erzielen wir den Effekt, dass die Abstrahlung von Lichtpulsen mit mehr als zwei Photonen unterdrückt ist. Dieser Quanteneffekt tritt dagegen nicht auf, wenn wir den Resonator anregen. Dann registrieren wir z.B. auch verstärkt Lichtpulse mit drei oder mehr Photonen.“

Die zugrundeliegenden Prozesse erläutert Christoph Hamsen, Doktorand am Experiment: „Wenn das Atom angeregt wird, dann haben wir es mit konkurrierenden Mechanismen zu tun. Einerseits kann das Atom nur eine Anregung auf einmal aufnehmen. Andererseits ist das stark gekoppelte Atom-Resonator-System für die Absorption von zwei Photonen resonant. Dieses Wechselspiel führt zu einer Folge von Lichtpulsen mit einer nicht-klassischen Photonen-Verteilung.“ Und Nicolas Tolazzi, ebenfalls Doktorand am Experiment, ergänzt: „Beobachten konnten wir dieses Verhalten in Korrelationen zwischen detektierten Photonen, wobei drei gleichzeitige Photonen seltener auftraten als klassisch erwartet.“

Prof. Gerhard Rempe gibt einen Ausblick auf mögliche Erweiterungen dieses Experiments: „Noch sendet unser System auch Lichtpulse mit einem oder null Photonen aus, es arbeitet also wie eine Art ‚Tiefpassfilter‘. Für viele Anwendungen bei der Übertragung und Verarbeitung von Quanteninformation benötigt man aber z.B. genau zwei, drei oder vier Photonen. Unser Ziel ist es, in Zukunft solche reinen Zustände zu generieren. Die in diesem Experiment erreichte Zwei-Photonen-Blockade ist ein erster Schritt in diese Richtung." Olivia Meyer-Streng

Bildbeschreibung:
Veranschaulichung der Zwei-Photonen-Blockade.
Oben: Unter Bestrahlung mit Laserpulsen kann ein einzelnes Atom im freien Raum nur ein Photon speichern und aussenden, wobei die Richtung nicht vorgegeben ist.
Mitte: Der Resonator alleine kann beliebig viele Photonen aufnehmen und wieder aussenden.
Unten: Bei dem stark gekoppelten Atom-Resonator-System kann die Frequenz des Laserlichts so gewählt werden, dass das System maximal zwei Photonen speichern und wieder aussenden kann.

Originalveröffentlichung:
Christoph Hamsen, Karl Nicolas Tolazzi, Tatjana Wilk, and Gerhard Rempe
Two-Photon Blockade in an Atom-Driven Cavity QED System
Physical Review Letters 118, 133604 (31.03.2017)

Kontakt:

Dr. Tatjana Wilk
Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 - 670
E-Mail: tatjana.wilk@mpq.mpg.de

Prof. Dr. Gerhard Rempe
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 701
E-Mail: gerhard.rempe@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 - 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau
17.11.2017 | Universität Ulm

nachricht Zwei verdächtigte Sterne unschuldig an mysteriösem Antiteilchen-Überschuss
17.11.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte