Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Teilchen aus reiner Kernkraft

12.10.2015

Berechnungen der TU Wien legen nahe, dass es sich bei dem Meson f0(1710) um ein ganz besonderes Teilchen handelt - um den lange gesuchten „Glueball“, ein Teilchen aus reiner Kraft.

Seit Jahrzehnten sucht man nach sogenannten „Gluebällen“, nun könnten sie gefunden sein. Ein Glueball ist ein exotisches Teilchen, das ganz aus Gluonen besteht – aus den „Klebeteilchen“, von denen unsere Kernteilchen zusammengehalten werden. Weil Gluebälle extrem instabil sind, kann man sie nur indirekt über ihre Zerfallsprozesse nachweisen, über die aber wenig bekannt ist.


Kernteilchen (links) bestehen aus Quarks (Materieteilchen) und Gluonen (Kraftteilchen). Ein Glueball (rechts) hingegen besteht aus reinen Gluonen.

TU Wien

Prof. Anton Rebhan und Frederic Brünner von der TU Wien konnten nun allerdings durch einen neuen theoretischen Zugangs den Zerfall von Gluebällen berechnen. Ihre Ergebnisse passen sehr gut zu Daten, die man in Teilchenbeschleuniger-Experimenten gemessen hat. Somit deutet nun vieles darauf hin, dass es sich bei der bereits beobachteten Resonanz f0(1710) um den lange gesuchten Glueball handelt. Weitere Experimente werden in den nächsten Monaten erwartet.

Auch Kräfte sind Teilchen

Protonen und Neutronen bestehen aus noch kleineren Elementarteilchen, den Quarks. Diese Quarks werden von der starken Kernkraft zusammengehalten. „In der Elementarteilchenphysik wird jede Kraft durch ein bestimmtes Kraftteilchen vermittelt, und das Kraftteilchen der starken Kernkraft ist das sogenannte Gluon“, erklärt Prof. Anton Rebhan vom Institut für Theoretische Physik der TU Wien.

Man kann Gluonen als kompliziertere Version der Photonen betrachten. Die masselosen Photonen (Lichtteilchen) vermitteln die Kräfte des Elektromagnetismus, acht verschiedene Gluonen vermitteln die starken Kernkräfte.

Allerdings gibt es zwischen Photonen und Gluonen einen ganz entscheidenden Unterschied: Gluonen spüren die von ihnen übertragene Kraft auch selbst, Photonen nicht. Daher gibt es keine Bindungszustände aus reinem Licht. Teilchen, die nur aus Gluonen zusammengesetzt sind, die also aus reiner Kernkraft bestehen, sind hingegen prinzipiell möglich.

Schon 1972, kurz nachdem die Theorie der Quarks und Gluonen entwickelt wurde, spekulierten die Physiker Murray Gell-Mann und Harald Fritzsch, dass es einen solchen Bindungszustand aus reinen Gluonen geben könnte (ursprünglich etwas vornehmer „Gluonium“ genannt).

Bei Teilchenbeschleuniger-Experimenten fand man mehrere Teilchen, die als Kandidaten für Gluebälle gelten, doch Einigkeit darüber, ob eines der gemessenen Signale tatsächlich der gesuchte Glueball ist, gab es nie. Es könnte sich auch um gewöhnliche Bindungszustände aus Quarks und deren Antiteilchen handeln. Für einen direkten Nachweis sind Gluebälle jedenfalls zu kurzlebig. Wenn es sie gibt, muss man sie anhand ihrer Zerfallsprodukte identifizieren.

Kandidat f0(1710) zerfällt in seltsame Quarks

„Leider sind die Zerfallsmuster der Gluebälle nicht rigoros berechenbar“, sagt Anton Rebhan. Vereinfachte Modellrechnungen haben aber ergeben, dass es zwei realistische Kandidaten für Gluebälle gibt: Mesonen mit den Bezeichnungen f0(1500) und f0(1710). Ersteres wurde lange Zeit für den wahrscheinlichsten Glueball-Kandidaten gehalten.

Das zweite würde mit seiner höheren Masse zwar besser zu Computersimulationen passen, doch bei seinem Zerfall entstehen bevorzugt schwere Quarks (die sogenannten „strange Quarks“), und das erschien der Mehrheit der Teilchenphysik-Community unplausibel, weil Gluonen bei ihren Wechselwirkungen normalerweise keinen Unterschied zwischen schweren und leichten Quarks machen.

Anton Rebhan und sein Doktorand Frederic Brünner sind der Lösung dieses Rätsels nun aber mit einem neuen Zugang einen großen Schritt nähergekommen. Es gibt nämlich fundamentale Zusammenhänge zwischen Quantentheorien, die teilchenphysikalische Phänomene in unserer dreidimensionalen Welt beschreiben, und bestimmten Gravitationstheorien, die höherdimensionale Räume beschreiben. Dadurch kann man Fragen aus der Teilchenphysik mit Methoden aus der Gravitationstheorie beantworten.

„Aus unseren Rechnungen ergab sich, dass Gluebälle tatsächlich bevorzugt in schwere Quarks zerfallen können“, sagt Anton Rebhan. Das berechnete Zerfallsmuster in zwei leichtere Teilchen konnte erstaunlicherweise das Zerfallsmuster von f0(1710) mit hoher Genauigkeit reproduzieren. Gleichzeitig sind auch kompliziertere Zerfälle der Gluebälle in mehr als zwei Teilchen möglich, auch diese Zerfallsraten konnten mit dem neuen Ansatz berechnet werden.

Weitere Messdaten bald erwartet

Für diese zusätzlichen Zerfallsraten gibt es bisher noch keine Messungen, doch bereits in den nächsten Monaten könnten zwei spezielle Experimente am Large Hadron Collider des CERN (TOTEM und LHCb) sowie ein Beschleunigerexperiment in Beijing (BESIII) neue Daten dazu liefern. „Diese Tests werden die Nagelprobe für unsere Theorie sein“, glaubt Anton Rebhan.

„Unsere Rechnung liefert für diese Zerfälle ganz andere Vorhersagen als konkurrierende einfachere Modelle. Sollten die Ergebnisse also mit unseren Vorhersagen zusammenpassen, wäre das ein entscheidender Erfolg für unseren Ansatz.“ Damit wären die Indizien erdrückend, dass das bereits seit längerer Zeit bekannte aber bislang noch wenig erforschte Teilchen f0(1710) der so lange gesuchte Glueball-Zustand ist. Außerdem würde es ein weiteres Mal zeigen, dass sich mit höherdimensionaler Gravitationstheorie auch teilchenphysikalische Phänomene analysieren kann – das wäre ein neuerlicher Triumph der allgemeinen Relativitätstheorie, die heuer im November ihren 100. Geburtstag feiert.

Rückfragehinweis:
Prof. Anton Rebhan
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
+43-1-58801-13620
rebhana@tph.tuwien.ac.at

Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
+43-1-58801-41027
florian.aigner@tuwien.ac.at

Weitere Informationen:

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.131601 Originalpublikation in Physical Review Letters

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ruckartige Bewegung schärft Röntgenpulse
28.07.2017 | Max-Planck-Institut für Kernphysik

nachricht Drei Generationen an Sternen unter einem Dach
27.07.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ruckartige Bewegung schärft Röntgenpulse

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Ferienkurs mit rund 600 Teilnehmern aus aller Welt

28.07.2017 | Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Zirkuläre Wirtschaft: Neues Wirtschaftsmodell für die chemische Industrie?

28.07.2017 | Studien Analysen

Assistenzsysteme für die Blechumformung

28.07.2017 | Maschinenbau

Ruckartige Bewegung schärft Röntgenpulse

28.07.2017 | Physik Astronomie