Ein Sternhaufen im Kielwasser von Carina

Der farbenfrohe Sternhaufen NGC 3590

NGC 3590 ist ein kleiner offener Sternhaufen, der sich ungefähr 7500 Lichtjahre von der Erde entfernt im Sternbild Carina (der Schiffskiel) befindet. Er besteht aus einer Ansammlung von Dutzenden von Sternen, die durch ihre Eigengravitation schwach gebunden und etwa 35 Millionen Jahre alt ist.

Dieser Sternhaufen ist nicht nur schön, er ist auch sehr nützlich für Astronomen. Durch Untersuchungen dieses und anderer nahegelegener Sternhaufen können Astronomen die Eigenschaften der Spiralscheibe unserer Galaxie, der Milchstraße, erforschen. NGC 3590 befindet sich im größten einzelnen Segment eines Spiralarms, der von unserer Position in der Galaxis aus gesehen werden kann: die Spiralstruktur um das Sternbild Carina.

Die Milchstraße besitzt mehrere Spiralarme, lange geschwungene Ströme aus Gas und Sternen, die sich vom Zentrum der Galaxis aus erstrecken. Diese Arme, zwei mit Sternen gefüllte Hauptarme und zwei weniger bevölkerte Nebenarme, sind alle nach den Sternbildern benannt, durch die sie hauptsächlich verlaufen [1]. Die Spiralstruktur um das Sternbild Carina wird von der Erde aus als ein Teil des Himmels, der stark mit Sternen bevölkert ist, gesehen. Er liegt im Carina-Sagittarius-Nebenarm.

Der Name dieses Armes – Carina, oder auch der Schiffskiel – ist durchaus angemessen. Diese Spiralarme sind eigentlich Wellen von aufgetürmtem Gas und Sternen, die durch die Milchstraßenebene rauschen und dabei schillernde Ausbrüche von Sternentstehung verursachen, die Sternhaufen wie NGC 3590 zurücklassen. Durch das Aufsuchen und Beobachten junger Sterne, wie jene in NGC 3590, ist es möglich die Entfernung der unterschiedlichen Teile des Spiralarms zu bestimmen und so mehr über dessen Struktur zu erfahren.

Typische offene Sternhaufen beherbergen jegliche Anzahl zwischen einigen zehn bis mehreren tausenden von Sternen und liefern Astronomen Hinweise auf die Entwicklung von Sternen. Die Sterne in einem Sternhaufen wie NGC 3590 werden ungefähr zur gleichen Zeit aus derselben Gaswolke gebildet, wodurch diese Gebiete zum perfekten Versuchsort für die Überprüfung von Theorien zur Sternentstehung und Entwicklung werden.

Diese Aufnahme des Wide Field Imager (WFI) am MPG/ESO 2,2-Meter-Teleskop am La Silla-Observatorium zeigt den Sternhaufen und die Gaswolken, die ihn umgeben. Durch die Strahlung von nahen heißen Sternen leuchten die Wolken orange und rot. Das große Sichtfeld des WFI fängt außerdem eine riesige Anzahl von Hintergrundsternen ein.

Für diese Aufnahme wurden mehrere Beobachtungen mit verschiedenen Filtern durchgeführt, um die verschiedenen Farben der Szenerie einzufangen. Das Bild wurde mittels Kombination mehrerer Einzelaufnahmen angefertigt, die im sichtbaren und infraroten Spektralbereich aufgenommen wurden sowie mit einem speziellen Filter, der nur die Strahlung von leuchtendem Wasserstoff sammelt.

[1] Diese vier Arme tragen die Namen Carina-Sagittarius, Norma, Scutum-Centaurus und Perseus.

Die Europäische Südsternwarte ESO (European Southern Observatory) ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Getragen wird die Organisation durch ihre 15 Mitgliedsländer: Belgien, Brasilien, Dänemark, Deutschland, Finnland, Frankreich, Großbritannien, Italien, die Niederlande, Österreich, Portugal, Spanien, Schweden, die Schweiz und die Tschechische Republik. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO betreibt drei weltweit einzigartige Beobachtungsstandorte in Nordchile: La Silla, Paranal und Chajnantor. Auf dem Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts und zwei Teleskope für Himmelsdurchmusterungen: VISTA, das größte Durchmusterungsteleskop der Welt, arbeitet im Infraroten, während das VLT Survey Telescope (VST) für Himmelsdurchmusterungen ausschließlich im sichtbaren Licht konzipiert ist. Die ESO ist der europäische Partner bei den neuartigen Teleskopverbund ALMA, dem größten astronomischen Projekt überhaupt. Derzeit entwickelt die ESO ein Großteleskop mit 39 Metern Durchmesser für Beobachtungen im Bereich des sichtbaren und Infrarotlichts, das einmal das größte optische Teleskop der Welt werden wird: das European Extremely Large Telescope (E-ELT).

Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsländern (und einigen weiteren Staaten) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie in Heidelberg.

Carolin Liefke
ESO Science Outreach Network – Haus der Astronomie
Heidelberg, Deutschland
Tel: 06221 528 226
E-Mail: eson-germany@eso.org

Richard Hook
ESO, Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Handy: +49 151 1537 3591
E-Mail: rhook@eso.org

Dies ist eine Übersetzung der ESO-Pressemitteilung eso1416.

Media Contact

Carolin Liefke ESO-Media-Newsletter

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer