Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Plasma aus Materie und Antimaterie

04.05.2015

Im täglichen Leben begegnet uns die Materie in drei Zuständen: fest, flüssig, gasförmig. Hinzu kommt als weitere Form das durch seine Eigenschaften ausgezeichnete Plasma: Ein insgesamt neutrales aber ionisiertes Gas, das aus positiven Ionen und freien Elektronen besteht und das auch als vierter Zustand der Materie bezeichnet wird. Nun hat eine Gruppe von Experimentalphysikern der Queen’s University Belfast in enger Zusammenarbeit mit der Abteilung Theoretische Quantendynamik des Heidelberger Max-Planck-Instituts für Kernphysik erstmals ein neuartiges Plasma im Labor hergestellt, das ausschließlich aus Elektronen und ihren Antiteilchen (Positronen) besteht [Nature Communications 23.04.2015]

Das Positron ist das Antiteilchen zum Elektron, das mit diesem alle Eigenschaften gemeinsam hat, bis auf die Ladung mit entgegengesetztem Vorzeichen. Ultrarelativistische Jets aus einem Elektron-Positron-Plasma treten in verschiedenen astrophysikalischen Szenarien unter extremen Bedingungen auf, so z. B. in den Quellen von Gamma-Blitzen.


Abb. 1: Vergleich Experiment/Theorie für Anzahl der Elektronen (a), Positronen (b) und Positronen-Anteil (c). Blau: exp. Daten; rot: FLUKA-Simulation; grün: Modellrechnung, in (a) und (b) x 0,75.

Queen's University Belfast / MPIK

Somit stellen sie ein einzigartiges Werkzeug zum Test von bisher unerforschten Gebieten der Physik dar und bieten zugleich tiefere Einblicke in die Eigenschaften des frühen Universums. Die Möglichkeit der Erzeugung dieses speziellen Materiezustands erlaubt die genaue Untersuchung solcher Phänomene unter kontrollierten Bedingungen.

Dieses Ziel hat nun ein Team von Experimentalphysikern um Dr. Gianluca Sarri und Prof. Matthew Zepf von der Queen’s University Belfast in intensiver Zusammenarbeit mit Antonino Di Piazza und Christoph H. Keitel aus der Abteilung für Theoretische Quantendynamik des Max-Planck-Instituts für Kernphysik in Heidelberg erreicht.

Das Experiment wurde an der Astra Gemini Laser Facility des Rutherford Appleton Laboratory in Oxfordshire (UK) durchgeführt. Ein ultrarelativistischer Elektronenstrahl, erzeugt durch Beschleunigung im elektromagnetischen „Fahrwasser“ eines hochintensiven optischen Laserpulses, trifft auf ein festes Bleitarget.

Die eingeschossenen Elektronen wechselwirken in komplizierter Weise mit den Kernen und Elektronen der Bleiatome und erzeugen ein Paket aus ultrarelativistischen Elektronen und Positronen, das nach dem Austritt aus dem Target auf dessen Rückseite nachgewiesen werden kann. Dabei hängt der jeweilige Anteil von Elektronen und Positronen von der Dicke des Targets ab (siehe Abb. 1). Die Dichte des Plasmas erwies sich als ausreichend hoch, um kollektive Effekte zu zeigen.

„Unsere Hauptaufgabe war, die wesentlichen Mechanismen zur Produktion eines Elektron-Positron-Pakets zu identifizieren, dessen Bildung und Entwicklung innerhalb des Festkörpertargets möglichst prägnant und einfach zu beschrieben und so die zugrundeliegende Physik zu ergründen“, sagt Antonino Di Piazza.

Heraus kam ein überraschend simples Modell, das – neben allen möglichen Wechselwirkungen innerhalb des Targets – nur zwei fundamentale Prozesse der Quantenelektrodynamik beinhaltet, die beide in Gegenwart der durch die Atomhülle abgeschirmten elektromagnetischen Felder der Targetkerne auftreten:

1. Bremsstrahlung von Elektronen und Positronen und 2. Elektron-Positron-Paarerzeugung durch Photonen. Sowohl analytische als auch numerische Rechnungen stimmen sehr gut mit den experimentellen Resultaten für die relativen Anteile von Elektronen und Positronen in dem erzeugten Plasmastrahl überein (siehe insbesondere die blauen Punkte und die grüne gestrichelte Linie in Abb. 1c).

Absolute Ausbeuten an Elektronen und Positronen werden durch das Modell ebenfalls gut vorhergesagt. Um noch mehr Details der experimentellen Befunde theoretisch zu reproduzieren, hat Gianluca Sarri den verfügbaren integrierten Monte-Carlo-Simulationscode für Teilchenphysik FLUKA angewendet (rote Punkte in Abb. 1).

Dieser beinhaltet u. a. die Wechselwirkung der Elektronen und Positronen untereinander und mit den Targetatomen sowie Hochenergieprozesse wie die Erzeugung von Myon-Antimyon-Paaren (den nächst schwereren „Verwandten“ von Elektronen/Positronen unter den Elementarteilchen). Diese Mechanismen reduzieren die Ausbeute gegenüber dem einfachen analytischen Modell um ca. 25%.

Originalveröffentlichung:

Generation of neutral and high-density electron–positron pair plasmas in the laboratory
G. Sarri, K. Poder, J. Cole, W. Schumaker, A. Di Piazza, B. Reville, T. Dzelzainis, D. Doria, L.A. Gizzi, G. Grittani, S. Kar, C.H. Keitel, K. Krushelnick, S. Kuschel, S.P.D. Mangles, Z. Najmudin, N. Shukla, L.O. Silva, D. Symes, A.G.R. Thomas, M. Vargas, J. Vieira and M. Zepf
Nature Communications 6:6747 (2015); DOI: 10.1038/ncomms7747

Kontakt:

PD Dr. Antonino Di Piazza
MPI für Kernphysik Heidelberg
Tel.: +49 6221 516-161
E-Mail: dipiazza@mpi-hd.mpg.de

Dr. Gianluca Sarri
Centre for Plasma Physics
Queen’s University Belfast
Tel.: +44 28 9097 3575
E-Mail: g.sarri@qub.ac.uk

Weitere Informationen:

http://www.nature.com/ncomms/2015/150423/ncomms7747/full/ncomms7747.html Originalpublikation
http://www.mpi-hd.mpg.de/keitel/dipiazza Gruppe High-Energy Quantum Electrodynamics, MPIK
http://www.qub.ac.uk/research-centres/CentreforPlasmaPhysics Centre for Plasma Physics, Queen's University Belfast
https://www.stfc.ac.uk/CLF/Facilities/Astra/Astra+Gemini/12258.aspx Lasersystem Gemini, Rutherford Appleton Laboratory

Dr. Bernold Feuerstein | Max-Planck-Institut für Kernphysik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lange Speicherung photonischer Quantenbits für globale Teleportation
13.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften