Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein neues Fundament für alle Maße

26.03.2015

Naturkonstanten sollen in Zukunft die Einheiten im Internationalen Einheitensystem definieren.

Die Sekunde und der Meter sind als Streber schon vorgeprescht. Das Kilogramm, das Ampere und die anderen aus der Klasse der physikalischen Basiseinheiten versuchen nun den Anschluss zu schaffen. So könnte man ausdrücken, was sich gerade in der Welt der Metrologie, in der Welt des Messens, tut.


Im neuen Internationalen Einheitensystem (SI) werden sieben Naturkonstanten als definierende Bezugsgrößen festgelegt.

PTB

Das Internationale Einheitensystem steht vor einer grundlegenden Neudefinition: Naturkonstanten sollen in Zukunft für alle sieben Basiseinheiten und für alle abgeleiteten Einheiten als definierende Bezugsgrößen dienen. Anfällige Objekte wie das Ur-Kilogramm oder völlig unpraktische Formulierungen wie für die elektrische Stromstärke werden dann ausgedient haben.

Die experimentellen Vorbereitungen für diese neuen Definitionen laufen weltweit – und speziell in der Physikalisch-Technischen Bundesanstalt (PTB) – auf Hochtouren. Auf der nächsten Generalkonferenz für Maß und Gewicht im Jahr 2018 soll diese neue Ära dann voraussichtlich offiziell eingeläutet werden. Den großen Nutzen werden Wissenschaft und Hochtechnologie haben. Der Verbraucher wird die Veränderungen in seinen Alltagsmessungen nicht spüren.

Wie lang eine Sekunde, wie weit ein Meter und wie schwer ein Kilogramm ist, weiß jeder – zumindest so ungefähr. In einer Hightech-Welt wollen die Dinge allerdings ein wenig genauer als ungefähr vermessen sein. Und so versuchen die Metrologen dieser Welt, die Grundlagen Ihres Tuns seit jeher auf solide Füße zu stellen und die physikalischen Einheiten bestmöglich zu definieren.

Wären alle Definitionen bereits so weit wie heute schon die Zeit- und die Längeneinheit, die Sekunde und der Meter, wäre die metrologische Welt vollständig in Ordnung. Bei der Zeitmessung sind Atomuhren seit knapp 50 Jahren das Maß der Dinge – aus der Energiestruktur eines Cäsiumatoms lässt sich hier die Sekunde ableiten. Bei der Längenmessung hat der Urmeterstab auch schon seit Jahrzehnten ausgedient und moderneren Definitionen Platz gemacht.

Heute ist der Meter diejenige Strecke, die das Licht in einem ganz gewissen Bruchteil von einer Sekunde zurücklegt. Mit der Lichtgeschwindigkeit als unveränderlicher Naturkonstante ist diese Definition perfekt. Sie lässt sich, anders als beim Urmeterstab, nicht verbiegen, verlängern, verkürzen oder anderweitig verändern.

Ebenso hätten es die Metrologen auch gern bei allen anderen Basiseinheiten, speziell bei Kilogramm und Mol, bei Ampere und Kelvin. Die Situationen bei diesen vier sind stark verbesserungswürdig: Das internationale Ur-Kilogramm und seine nationalen Kopien leiden unter Masseschwankungen und unerklärten Driften. Die Kelvin-Temperaturskala ist auf Wasser gebaut – und der definierende Fixpunkt dieser Skala (der so genannte Tripelpunkt) ist sensibel abhängig von der genauen Isotopenzusammensetzung des verwendeten Wassers.

Das Ampere ist über eine idealisierte Versuchsanordnung zweier unendlich langer, unendlich dünner Leiter und deren Kraftwirkung aufeinander definiert – ein Anachronismus vor allem im Vergleich zu den Einheiten für die elektrische Spannung und den elektrischen Widerstand, die sich auf Quanteneffekte stützen.

Dieser Zustand bei einigen der Basiseinheiten quält die Metrologen schon seit Jahren und ist damit zugleich enormer Ansporn, nach Lösungen zu suchen. Wie bei Sekunde und Meter könnten Naturkonstanten alles zum Guten wenden. Sobald eine Beziehung zwischen einer Basiseinheit und einer Naturkonstante gefunden ist, kann die alte Definition zu den Akten gelegt werden, sofern (und genau hier ist die eigentliche Aufgabe begründet) eben diese Naturkonstante mit hinreichend guter Genauigkeit bekannt ist, d. h. mit eben dieser Genauigkeit gemessen werden kann.

In den Laboratorien der Nationalen Metrologieinstitute (NMI) laufen daher Experimente zur Messung dieser ausgewählten Naturkonstanten. Und mittlerweile sind die Ergebnisse so vielversprechend, dass das Internationale Komitee für Maß und Gewicht auf seiner letzten Generalkonferenz im November 2014 eindeutige Resolutionen für ein neues Einheitensystem verabschiedet hat: Aller Voraussicht nach werden die neuen Definitionen bei der nächsten Generalkonferenz im Jahr 2018 in Kraft treten und damit für alle 55 Mitglieds- und 41 assoziierten Staaten der Meterkonvention verbindlich.

Die verbleibende Zeit bis zur nächsten Generalkonferenz wird nun in allen großen NMI dazu genutzt, die neuen Definitionen experimentell vorzubereiten. In der PTB sind dabei alle Basiseinheiten ein heißes Forschungsobjekt: Die PTB-Ergebnisse bei der Messung der Naturkonstanten für das neue Kilogramm (Planck-Konstante), das neue Mol (Avogadro-Konstante) und das neue Kelvin (Boltzmann-Konstante) sowie die Realisierung des neuen Ampere (Elementarladungen pro Sekunde) sind Schlüsselergebnisse für die Neudefinitionen. jes/ptb

Ansprechpartner
Prof. Dr. Joachim Ullrich, Präsident der PTB und Präsident des Consultative Committee for Units (CCU), E-Mail: joachim.ullrich@ptb.de, Tel.: (0531) 592-1001

Weiterführende Informationen:
• J. Stenger, J. H. Ullrich, „Für alle Zeiten … und Culturen“, Physik Journal 13 (2014) Nr. 11
• Resolutionen der 25. CGPM (General Conference on Weights and Measures): http://www.bipm.org/en/cgpm-2014/

Anhang:
Naturkonstanten zur Neudefinition der Basiseinheiten im Internationalen Einheitensystem
(SI = Système international d´unités)

Die geplanten Neudefinitionen im SI verbinden jede Basiseinheit mit einer „definierenden Konstante“ und legen die Zahlenwerte für diese sieben ausgewählten Konstanten fest. Eine eindeutige Eins-zu-eins- Abbildung existiert für die Sekunde und das Mol. Für die anderen Basiseinheiten braucht man mehr als eine festgelegte Konstante, beispielsweise für das Meter neben der Lichtgeschwindigkeit auch die Cäsium-Referenzfrequenz. Wichtig ist im Rahmen der Neudefinition, dass mit der Festlegung der sieben Konstanten automatisch auch alle abgeleiteten Einheiten definiert sind, so ist etwa das Coulomb (als Ampere mal Sekunde) direkt ein Vielfaches der Konstante „Elementarladung“.

Imke Frischmuth | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ptb.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

nachricht Sternenstaub reist häufiger in Meteoriten mit als gedacht
15.08.2017 | Max-Planck-Institut für Chemie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie